
Upgraded Software and Embedded Improvements: A Puzzle 
of User Heterogeneity. 

 
Raviv Murciano-Goroff, Ran Zhuo, and Shane Greenstein 

April 2024 
 

PRELIMINARY. PLEASE DO NOT QUOTE.  
COMMENTS WELCOME. 

 
Abstract 

 
How prevalent are severe software vulnerabilities, how fast do software users respond to 

the availability of secure versions, and what determines the variance in the installation 
distribution? Using the largest dataset ever assembled on user updates, tracking software server 
updates by over 150,000 medium and large U.S. organizations between 2000 and 2018, this 
study finds widespread usage of server software with known vulnerabilities, with 57% of 
organizations using software with severe security vulnerabilities even when secure versions were 
available. The study estimates several different reduced-form models to examine which 
organization characteristics correlate with higher vulnerability prevalence and which update 
characteristics causally explain higher responsiveness to the releases of secure versions. The 
disclosure of severe vulnerability fixes in software updates does not jolt all firms into installing 
them. Factors related to the cost of updating, such as whether the software is hosted on a cloud-
based platform and whether the update is an incremental change or a major overhaul, play an 
important role. Observables cannot easily explain much variation. These findings alter how 
firms' relative (in)attentiveness to act on software update releases should be incorporated into the 
design of cybersecurity policies. 
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1. Introduction 

Over the past twenty years, disruptive cyberattacks on companies have increased (EY 

Americas, 2021). Many cyberattacks exploit vulnerabilities in the software running on 

companies’ servers, even when the software vendors previously acknowledged the 

vulnerabilities and provided updates to fix them (Ranger, 2019).1 For example, in 2017, the UK’s 

National Health Service fell victim to a cyberattack that exploited a vulnerability in their server 

software. A software update had been available to fix that vulnerability for over a month, but it 

had not been installed (Acronis International, 2017; Palmer, 2017). The cyberattack resulted in 

the cancellation of thousands of operations, including those of emergency patients. In the same 

year, hackers exploited a vulnerability in the server software hosting the Equifax website, 

exposing the information of over 143 million individuals (Goodin, 2017). Once again, a patch 

had been available for two months. In 2018, the city of Atlanta suffered a hacking incident, 

halting many of the city’s departments and operations. Following the incident, an audit found 

1,500 to 2,000 vulnerabilities in the city’s system, with some of the vulnerabilities being present 

for almost a year (Harvey, 2018; Goldenberg and Zlatev, 2022). 

These events garnered media attention and spurred calls from policymakers for increased 

investment and diligence in cybersecurity (Barrett, 2018). The policy proposals considered in the 

wake of these incidents took different forms. Some policies encouraged vendors to produce 

higher-quality software by making software vendors liable for the cost that users face from 

installing patches (August and Tunca, 2011).2 Researchers also encouraged vendors to release 

updates and patches more quickly by mandating the public disclosure of security vulnerabilities 

(Arora, Telang, and Xu, 2008). Other proposals suggested restricting the frequency of software 

update releases and the amount of information software vendors disclose about vulnerabilities, 

decreasing the potential for malicious actors to learn from the vulnerability disclosures 

(Rescorla, 2004; Mitra and Ransbotham, 2015). 

Whether or not these policies are beneficial depends on three related factors: untested 

assumptions about the prevalence of security vulnerabilities in installed and actively used server 

 
1 Other examples include Bank of America’s ATMs being out of service and Continental Airlines’ flight being 
cancelled due to cyberattacks exploiting unpatched vulnerabilities over six months old (Baroudi Bloor, 2003). 
2 August and Tunca (2011) study the provisioning of patches in an environment with profit-maximizing software 
vendors. In our study setting, the software is open-source and created by a group of volunteers and a non-profit 
foundation. Thus, charging the “software vendor” for patch costs is impossible. 
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software, the determinants of firm decisions regarding whether to install software updates for 

server software with vulnerabilities and the responsiveness of firms to attributes of the updates 

released, such as whether they respond faster to an especially severe vulnerability. These factors 

are consequential. Prevalence matters because mandating disclosure of vulnerabilities may 

decrease (increase) malicious attacks if users largely follow (ignore) mandates to install updates. 

The determinants of vulnerabilities in software firms matter because if they positively 

(negatively) correlate with the sensitivity of data and the related value of installing security 

software updates, then a policy of taxing (subsidizing) software usage could dissuade 

(encourage) firms with poor (good) updating practices from using vulnerable software. Finally, 

suppose firms adopt routines that respond to (ignore) information about the severity of risks. In 

that case, disclosing such information may speed up (have no effect on) user patching and reduce 

(increase) cybersecurity risks.    

There is little empirical evidence on any of these three factors. That gap reflects the 

challenges of collecting and analyzing data about company software updating decisions over 

time and across different circumstances. Previous research relied on anecdotal narratives from 

small cross-sections of firms, but such data does not fully inform the discussion. For example, 

annual surveys (e.g., Harte Hanks) lack information on the precise timing of update installations, 

or retrospective reports (e.g., that consulting report we read) describe firms that have experienced 

hacking incidents but do not paint a picture of all firms. Indeed, to our knowledge, no data set 

provides information on software updates’ prevalence, determinants, and responsiveness across a 

broad spectrum of firms and over an extended period.  

This study addresses this gap by analyzing detailed panel data that tracks web server 

software.  Web server software offers a valuable lens on this gap in research for several reasons. 

Web servers are ubiquitous and critical to the modern web-based commercial Internet. Millions 

of firms in the United States and hundreds of millions across the globe use web servers to 

support billions of web pages, including those serving sensitive financial and personal 

information (Greenstein and Nagle, 2014). Therefore, highlighting the prevalence of 

vulnerabilities and the instigators of installing updates can improve understanding of 

cybersecurity. Besides the cybersecurity benefits, many server software updates include features 

and bug fixes that improve the experience of Internet users. Therefore, increasing the speed at 
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which companies respond to software updates could also support productivity improvements and 

enhance the user experience. 

The analysis focuses on organizations using the Apache web server, the most popular 

web server software deployed globally in the first few decades of the commercial Internet. In 

addition to its widespread use by millions of businesses, Apache is ideal for study because it 

publishes detailed information about its versions, updates, and vulnerabilities. Our data include 

the websites of over 150,000 U.S. medium to large companies and organizations using the 

Apache web server between 2000 and 2018. During this period, 28 severe vulnerabilities and 130 

less severe vulnerabilities were discovered in the Apache software. Each vulnerability reported 

to Apache was scored along multiple dimensions. In addition, during the same time period, 115 

software updates for the Apache server software were released, along with a list of the security 

vulnerabilities being corrected, the bugs fixed, and the new features included in the updates. 

Apache is open source, and each update was made freely available to anyone online without 

restrictions on who could use it or how it could be used. That also has advantages for empirical 

analysis of the timing of installing these software updates, which is not confounded by the 

changes in the pricing of the software or the policies regarding the availability of updates. Hence, 

the study treats the discovery of security vulnerabilities as a quasi-natural experiment in user 

updating that enables the estimation of several different reduced-form causal models. 

Using this data, we were able to document the prevalence of security vulnerabilities in 

the server software actively used by companies to host their websites, examine the determinants 

of firm decisions regarding whether to install software updates and identify the features of 

released server software updates associated with faster adoption by firms. 

The measurement of updates comes from raw data recorded on the Internet Archive’s 

Wayback Machine, which has routinely visited millions of websites monthly and recorded the 

content and metadata about that site, including the name and version number of the server 

software hosting each website. By tracking the server software used to host each organization’s 

website over time, it is possible to observe when an organization updates its server software or when 

an organization chooses to forgo updating and instead use the aging or vulnerable software. This paper’s 

dataset is the largest assembled about user installations of software updates. Section 4 explains 

how the dataset is compiled after Sections 2 and 3 review relevant theory and background.  
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The analysis proceeds along three related lines. First, Section 5 assesses the prevalence of 

security vulnerabilities in the server software of organizations using Apache and finds 

widespread use of server software with severe security vulnerabilities. Between 2000 and 2018, 

nearly 76% of the firms analyzed postponed software updates for severe security vulnerabilities 

for at least six months. Almost every Apache webserver hosting the organization's homepages 

has operated with a publicly disclosed severe security vulnerability in some months. In other 

months, less than 25% contained one or more severe vulnerabilities. While the precise 

configuration of companies’ server systems may prevent some of these vulnerabilities from 

being exploited by malicious actors, this finding suggests that a surprisingly large number of 

firms operate their websites using relatively outdated and potentially insecure server software. 

Second, Section 6 analyzes the determinants of firm decisions regarding whether to install 

software updates. Linear probability and Poisson analysis of the number of vulnerabilities show that 

factors related to the cost of updating, such as whether a company hosts their server on a cloud provider, 

can explain more of the variation than factors associated with the value of cybersecurity, such as 

having a high-traffic website or monetization on the site. In contrast, firms that stand to lose the 

most from a cyberattack, such as high-traffic websites and organizations whose websites have 

monetization technologies, are surprisingly more likely to have vulnerabilities in their software.  

After the econometric specification controls for various organizational characteristics, 

few observables can account for the lion’s share of variation in organizations’ responses to 

released software updates. For example, an organization’s industry, geography, and website 

characteristics do not strongly predict its routine regarding whether to allow vulnerabilities to 

accumulate or install updates promptly. Instead, persistent unobservable differences between 

organizations drive varying update rates. 

Section 7 explores the responsiveness of firms to attributes of the updates released, such as 

whether they respond faster to an especially severe vulnerability. It documents the characteristics of 

organizations and attributes of the Apache software updates associated with the faster or slower 

installation of those updates in the presence of newly discovered severe vulnerabilities. The best-

fitting hazard model with time-varying covariates is a stratified hazard specification, which 

accounts for persistent unobservable differences between organizations. The estimates from this 

model show that organizations are faster at installing minor updates or updates that exclusively 

fix security vulnerabilities. They are slower to install multifaceted and complex updates. 
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The final section of this article, Section 8, discusses the policy and managerial 

implications of the findings. Since most firms are predominantly inattentive to vulnerability 

disclosures, releasing software updates with less information about the vulnerabilities inside may 

be socially efficient. Furthermore, the estimates imply that firms should pay more attention to 

how technical complexity can inhibit them from staying secure. Automating updating, such as 

services provided through the cloud, could help speed up updating. 

This examination fills a critical empirical gap in the cybersecurity literature. While 

previous theories analyzing potential cybersecurity policies made differing prescriptions 

depending on software users’ behavior, much of the prior literature about cybersecurity and 

software updates focused on software vendors (Arora, Nandkumar, and Telang, 2006; Arora, 

Telang, and Xu, 2008; August and Tunca, 2011; Mookerjee et al., 2011; Mitra and Ransbotham, 

2015). With few exceptions, most of these papers portray software users’ decisions regarding 

when to install updates as deterministic or a function of update quality (Arora, Telang, and Xu 

2008). No empirical evidence verifies these behavioral assumptions.  

Previous work has acknowledged that not all firms immediately install patches after their release. 

However, these findings are based on limited descriptions of user-updating behavior from the selected 

firms.  For example, Arbaugh et al. (2000) examined data on the vulnerabilities exploited by hacked 

firms. Still, they lacked data on the fraction of firms operating with known vulnerabilities that 

did not get hacked. Empirically, this study fills this gap by documenting the prevalence of firms 

using server software with vulnerabilities over nearly two decades.3 

This study also contributes by explaining the factors influencing the rate at which firms 

install software updates. Like the framework presented by Dey et al. (2015), this study’s 

approach builds on the long-noticed phenomenon of considerable heterogeneity in the regular 

updating cycle and firms’ approaches to installing software updates (Arbaugh, Fithen, and 

McHugh, 2000). Some companies routinely update their server software, while others have a 

more ad-hoc approach to updating. In addition, among companies that wish to eventually adopt 

software updates, a variety of frictions and costs can cause delays in installing those updates 

(Baroudi Bloor, 2003; Dissanayake et al., 2022; August and Tunca, 2006; August et al., 2014; 

 
3 This includes the number of new features, bug fixes, severe and non-severe vulnerabilities fixed in each update. 
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Kang, 2022).4 This approach to empirical modeling and analysis enables inference as to why 

some firms keep their server software close to the technological frontier and install available 

updates promptly, while in contrast, others seem to plod along, accumulating vulnerabilities.  

In addition, this study answers a long-standing call for understanding the factors 

influencing firms’ responsiveness to the release of software updates. In their research on the 

tradeoffs of mandating faster disclosure of software vulnerabilities, Arora, Nandkumar, and 

Telang (2006) acknowledge the possibility that releasing a patch could increase the number of 

cyberattacks and called for empirically understanding the factors that hasten or slow user-

patching as a promising area for future research. This study leverages the quasi-random 

discovery of vulnerabilities to analyze longitudinal data to gain causal inferences on the factors 

impacting update decisions. This gives us insights into the attributes of a firm and software that 

influence server updating. 

Only two prior empirical research studies have examined longitudinal investment in 

cybersecurity and linked it to outcomes. Li et al. (2021) examined hospital adoption of security 

software and investment in related activities, while Liu et al. (2020) examined higher education 

and governance and associated actions. Both papers link these security investments to the 

propensity to suffer a security incident and exogenous organizational features and processes, 

using cross-sectional variance to infer causal determinants.5 Unlike these, the data used in this 

analysis allows us to see the precise time each firm installed each software update released 

between 2001 and 2019. This level of detail enables us to estimate both firms’ routine rate of 

updating and the time-varying factors that increase or decrease the updating rate. 

 
4 Kang (2022) emphasizes user incentives for upgrading enterprise software with many complements and the costs 
of accounting for such operational complexity. In a for-profit setting, August et al. 2014 investigate optimal trade-
offs between the cloud-supported provision of upgrades or on-premises upgrades in the face of heterogeneous user 
valuation of quality. For-profit firms target their promotions to segments that demand low, medium, or high security, 
depending on the risks and costs of alternatives. Relatedly, August and Tunca, 2006 analyze incentives to patch in 
both a for-profit and free setting if upgrade behavior reflects forward-looking incentives but ignores externalities on 
others. In the for-profit environment, incentives to fix are too low, requiring vendor subsidies to induce optimal 
behavior. With freeware, the incentives are too low (high) when the risks and costs are minor (significant).  
5 Li (2021) stresses the returns at organizations that invest in on-premises processes, such as anti-virus, intrusion 
detection, and authentication. Liu (2020) found behavior consistent with a tradeoff between granting autonomy and 
flexibility in using information systems and enforcing standardized, organization-wide security protocols—the more 
complex the computing environment, the higher the returns on centralized governance that limits vulnerabilities. 
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2. Theory of Server Software Users’ Response to Software 
Updates 

The prevalence of users operating software with known vulnerabilities, the determinants of 

firm decisions regarding whether to install software updates and the responsiveness of users to the release 

of updates that fix vulnerabilities are consequential factors for evaluating cybersecurity policies. This 

section provides a sketch of why these three factors impact the effectiveness of policies 

regarding cyber security proposed in the literature and motivates this study’s empirical 

investigations of them.6 

Prevalence.  The prevalence of firms operating with known security vulnerabilities in 

their existing operations influences whether cybersecurity policies based on mandated disclosure 

of security vulnerabilities are, on average, beneficial or detrimental. Arora, Caulkins, and Telang 

(2006) recommend that policymakers mandate that software vendors disclose known 

vulnerabilities within a relatively short time to motivate those vendors to produce and release 

updates quickly.  

However, the benefits of disclosure must be weighed against the detrimental effects. On 

the one hand, mandated disclosure provides malicious actors information that could be useful for 

hacking systems that have yet to install the updates to fix associated vulnerabilities. If most firms 

install updates when vulnerabilities are disclosed, then mandated disclosure will increase the 

provisioning of updates and improve the security of firm software. On the other hand, if most 

firms forgo installing available updates, policymakers need to be cautious with such a policy. 

Therefore, the prevalence of known vulnerabilities is a crucial empirical primitive to document 

and analyze. 

Determinants. Why does a population of software users display different prevalences of 

vulnerabilities within their installed software?  The determinants of firm decisions regarding whether to 

install software updates play an essential role in policy recommendations.  

 
6 While the models of firm software users vary somewhat across papers in the literature, most have a similar setup. 
Typically, these models represent firms’ decisions regarding installing a security update as a static problem. Firms 
have idiosyncratic values when using a particular piece of software. When a patch is released, firms that install the 
patch pay a fixed cost of patching but gain protection from the associated security vulnerability. In contrast, firms 
that do not patch face the expected cost of a hack of their systems (the probability of a hack scaled by the expected 
damage). For vulnerabilities with negative externalities, such as when a hacked system may be used in a DDOS 
attack, the probability of the attack may be proportional to the fraction of other firms who also do not patch. In 
addition, the expected damage from an attack may be proportional to the firm’s value from its system. 
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August and Tunca (2006) suggest several mechanisms to improve user incentives to 

install updates and patch vulnerabilities, including patching rebates and taxing software users to 

dissuade low-valuation firms who are not reliable patchers to abandon the software rather than 

use the software without installing software updates. The optimality of those mechanisms 

depends on both the cost of patching and the value risked by not patching. For example, for 

freeware, August and Tunca (2006) conclude that a usage tax is the most effective policy except 

when both patching costs and value at risk are low, in which case a patching rebate prevails.  

By similar reasoning, mandating disclosure of software vulnerabilities will hasten the 

provision of those updates and secure sensitive information if firms from industries with 

particularly sensitive data, such as finance and health firms, typically install available updates to 

patch vulnerabilities in their systems. If, on the other hand, firms with sensitive data are slower at 

installing software updates – perhaps because they have more rigorous update processes – then 

mandated disclosure may be detrimental specifically to those with the most sensitive data. 

Therefore, understanding the correlations between firm attributes and the prevalence of 

vulnerabilities is essential for evaluating which cybersecurity policies are welfare-improving.  

Responsiveness. The preceding concern directs attention to explaining why some firms 

tolerate more vulnerabilities than others. A related issue focuses on understanding why firms 

respond more promptly to specific software updates than others and what factors influence this 

variability. Responsiveness is a critical element of many models used to evaluate cybersecurity 

policy. 

Mitra and Ransbotham (2015) assess the optimal amount of information software vendors 

should disclose in updates. This decision involves a trade-off. On one hand, providing 

information about vulnerabilities gives malicious actors information that could be used to attack 

systems. On the other hand, providing information about vulnerabilities may also instigate more 

firms to install updates and patches if the details about the vulnerability frighten the firms 

regarding the risks of not installing the associated updates. Moreover, disclosing information 

about new functionalities and features in software updates, in addition to vulnerability fixes, 

could either signal significant costs related to installation or the additional value of updating. 

Whether providing detailed information about vulnerabilities or new functionalities will be 

beneficial depends on whether detailed information and what kind of information induces firms 

to install updates. 
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Rather than relying on assumptions about the prevalence of vulnerabilities, their 

determinants, and the responsiveness of update releases, this study leverages granular data to 

investigate and quantify these crucial parameters. 

3. Setting 

This study focuses empirical analysis on the Apache HTTP Server software (hereafter 

referred to as “Apache”) and the organization that supports it, the Apache Software Foundation 

(ASF). Four reasons motivate this focus. First, as the second most popular open-source project 

after Linux, Apache represents a significant component of the digital economy. Second, the 

ASF’s processes for reporting, disclosing, and rectifying security vulnerabilities reflect the 

security practices typical of open-source software. Third, potentially severe and economically 

significant consequences could result from poorly secured Apache server software, so the setting 

has policy importance. Lastly, the setting enables the collection of highly detailed data on 

Apache usage, vulnerability status, and updating behavior for a large group of U.S. firms, 

enabling empirical analysis. 

Server software like Apache is a computer program that enables users to host a website. 

When an individual visits an organization’s website, the individual’s web browser sends a 

request to that organization’s server. The server processes the request using server software that 

determines which content to send back to the individual. For example, after an individual 

connects to Amazon.com, the Amazon server software determines which products and prices to 

display to that individual. Similarly, after an individual connects to their bank’s website and 

accesses their online banking accounts, the server software transmits the individual’s login 

information and other sensitive personal financial data between the individual’s web browser and 

the bank. 

Apache’s emergence as a popular server software, tracing back to the early days of the 

digital revolution, makes it ideal for studies in open-source software and cybersecurity. Apache 

descended from the first server software. In 1993, the National Center for Supercomputing 

Applications (NCSA) at the University of Illinois developed a computer program called the 

NCSA HTTPd server, which supported sharing content on the newly diffusing World Wide 

Web. NCSA made HTTPd available as shareware within academic and research settings, along 

with the underlying code. HTTPd’s adoption spread quickly, partly because the servers did not 
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restrict the usage or modification of the software. Many web administrators took advantage by 

adding improvements as needed. In 1995, different teams of developers decided to coordinate 

their efforts into one server known as Apache (ostensibly because it was “a patchy web server”). 

The University of Illinois then transferred the development to the ASF without licensing or 

restrictions. Apache subsequently became popular as the commercial internet grew and became 

widely used. Murciano-Goroff, Zhuo, and Greenstein (2021) found that Apache was the most 

popular server software and powered 40% of the websites of medium to large U.S. firms 

between 2000 and 2018.  

Today, the ASF coordinates the development of the Apache server software, receives 

reports of vulnerabilities, orchestrates the disclosure of vulnerabilities, and releases software 

updates to mitigate those vulnerabilities. Their vulnerability handling process has been typical of 

open-source software.7  

In the most standard scenario, the ASF accepts reports from users about potential 

vulnerabilities. A team of security experts vet these submissions, known as reported 

vulnerabilities. After evaluating a reported vulnerability, the ASF initially keeps the reported 

vulnerability secret from the public so malicious actors are kept from being tipped off about its 

existence. At the same time, teams of developers develop a fix. When the ASF believes it is 

prudent to do so, it publicly discloses the vulnerability. We refer to these as disclosed 

vulnerabilities. The ASF discloses these vulnerabilities when it is essential to warn their users 

about security risks to encourage them to monitor their systems more carefully or to take 

mitigating actions, such as updating their software. When a fix for the vulnerability is 

successfully developed, the ASF releases the fix as part of a new version of Apache. At that 

point, Apache users decide whether and when to update their software to the latest version, and 

the vulnerabilities are called fixed vulnerabilities. To decrease the probability that malicious 

actors exploit a vulnerability, the ASF often releases the software update and discloses the 

vulnerability simultaneously. 

While this is the process that the ASF hopes will occur, some vulnerabilities are 

discovered and handled outside this procedure. Some vulnerabilities are discovered when a user 

 
7 The statement of this process is available on the Apache Software Foundation Security Team website at 
https://www.apache.org/security/. To the best of our knowledge, the overview of this process has stayed the same 
since the early days of the Apache Software Foundation. 
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notices and discusses problems with the program without knowing the situation, indicating an 

underlying vulnerability. In those cases, the date the vulnerability is reported and the date the 

ASF publicly discloses the vulnerability may be the same, and the ASF may disclose the 

vulnerability before a software update with the fix is ready to be released. 

Hundreds of Apache vulnerabilities reported, disclosed, and fixed have severe 

consequences. Using data feeds provided by the ASF, the National Institute of Standards and 

Technology (NIST) scores vulnerabilities based on their potential to harm users.8 We call 

vulnerabilities “severe” when the vulnerabilities score “high” for severity in the scoring system. 

These severe vulnerabilities are particularly harmful for two reasons. First, these vulnerabilities 

are easily exploitable. According to the scoring system, most severe security vulnerabilities do 

not require local access to the system to perform the attack; attackers can perform the attack over 

the network and often need no or little authentication to access and exploit the vulnerability. 

Moreover, once exploited, these vulnerabilities can result in significant losses. These include and 

are not limited to a partial or total disclosure of user information, modifying some or all the files 

in a system, reduced performance, or a complete system shutdown (Mell et al., 2007). As of 

August 1, 2018, among the 158 Apache vulnerabilities reported, 28 vulnerabilities scored “high” 

in severity. 

Beyond Apache’s widespread use, its representative process for managing vulnerabilities, 

and its cybersecurity policy significance, the context is enriched by the availability of detailed 

data on Apache usage and update practices among a broad array of U.S. organizations. 

Furthermore, the ASF has made public extensive information on each Apache version’s 

vulnerabilities, fixes, and feature enhancements, enabling precise measurement of users’ 

vulnerability and fix status. These data aspects will be elaborated on in the following section. 

 
8 The ASF submits Apache vulnerabilities to the Common Vulnerabilities and Exposures (CVE), an international, 
community-based data registry for cybersecurity vulnerabilities. Using CVE’s data feed, the NIST maintains the 
National Vulnerabilities Database (NVD). When a vulnerability is reported to CVE, it is entered in the NVD, and a 
score is computed based on the Common Vulnerability Scoring System (CVSS). https://nvd.nist.gov/vuln-
metrics/cvss# 
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4. Data 

This section explains the essential and ancillary data sources. A summary of data sources 

is presented in Table 1. We defer the construction of our various samples to their respective 

sections later. 

4.1. Key data source – server software usage panel of U.S. organizations 

The critical data source is a broad panel data set that tracks server software used by 

medium to large organizations in the U.S. between 2000 and 2018.  It records the usage of 

Apache and other server software, including Microsoft’s IIS and Nginx, and tracks the 

installation of updates over time. 

This panel data results from an extensive data collection process. It begins with 

information on all organizations in the Bureau van Dijk Mint Global database that have at least 

50 employees in the U.S. and listed websites. Each organization's estimated number of 

employees, revenue, industry, and headquarters location are available.9 

The Universal Resource Locator (URL) for each organization between 2000 and 2018 is 

matched with information from the Internet Archive (IA) Wayback Machine. The IA, a non-

profit organization, has routinely scanned millions of publicly facing websites for the past two 

decades and taken snapshots of the content on those sites. When an individual connects to a 

website, the server software that hosts the site responds with the site’s content and metadata 

about the server software. This metadata often contains the name of the server software and the 

server software version number (e.g., Apache 1.3.6).10 The responding server also communicates 

its IP address, a sequence of numbers indicating where the server is located. The IA collects and 

stores this metadata, the IP addresses, and the date of each scan. We compiled the server 

software name, version number, IP address, and the date recorded in the metadata for each IA 

scan of the firms in the sample of U.S. organizations. 

 
9 An organization in our dataset is mapped to a website domain. Two organizations with the same website domain 
are treated as part of the same organization. 
10 Users have a choice regarding how much information their server response headers show about their server 
software, ranging from no information to complete information, including the name, version, and operating system. 
Setting anything less than showing the server’s name and version is not recommended. As the ASF puts it, “… 
[Obscuring server header] makes it more difficult to debug inter-operational problems. Also, note that disabling the 
Server header does nothing to make your server more secure. The idea of ‘security through obscurity’ is a myth and 
leads to a false sense of safety.” See https://httpd.apache.org/docs/2.4/mod/core.html#servertokens. 
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It is important to note that the IA’s scanning frequency is irregular. Sometimes, a site is 

scanned multiple times within a month; at other times, it may be scanned only once over several 

months. We retain only the first scan of any organization with multiple scans. For sites scanned 

less frequently than monthly, this irregularity poses challenges in precisely measuring when 

updates occur. Although this does not affect much of the empirical analyses, the empirical study 

of how quickly organizations respond to available patches will be limited to a subset of 

organization months that underwent frequent scans, where the time to patch adoption can be 

precisely measured. 

Also note that while this data encompasses the usage and updates of other server 

software, including Microsoft’s IIS, the empirical analysis will focus on Apache due to the 

abundance of publicly available information regarding its vulnerabilities, fixes, and feature 

enhancements for each version. 

We supplement this data source with ancillary data describing each Apache version's 

vulnerabilities and other features of the organization and website characteristics. 

4.2. Apache version characteristics, including vulnerability and fix status 

When collecting data on Apache versions, it is necessary to understand how the versions 

are numbered. Apache versions are identified by three numbers separated by dots, for example, 

Apache 1.3.37. The first two numbers, such as Apache 1.3, represent the major version. Each 

major version introduces significant improvements in performance and functionality. Apache has 

had several major stable releases, including Apache 1.3 in 1998, Apache 2.0 in 2002, Apache 2.2 

in 2005, and Apache 2.4 in 2012. The ASF simultaneously makes minor updates to various 

major versions, providing vulnerability fixes and incremental improvements. The third number 

in the version denotes the minor version within the major version. For instance, Apache 2.4.1 

was released in February 2012, followed by 2.4.2 in April and 2.4.3 in August of the same year.  

For each minor version, it is possible to gather information about its vulnerabilities from 

the ASF and NIST, including each vulnerability’s severity, the date it was reported, the date it 

was disclosed to the public, and the release dates of new versions that fix the vulnerability. This 

enables determining whether each observation of an Apache minor version in the server usage 

panel had a reported, disclosed, or fixed severe security vulnerability at any given time and 

whether an updated major or minor version addressing the vulnerability was available then. In 

addition to vulnerabilities, we parsed Apache’s changelogs, which are documents summarizing 
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changes made in each software version update, to obtain the number of new and improved 

features added to each new minor version compared to the previous minor version. 

4.3. Organization Characteristics 

While the Bureau van Dijk Mint Global database provides a cross-sectional snapshot11 of 

the estimated number of employees, revenue, industry, and location for all organizations in the 

sample, the publicly traded firms in the sample have additional data about their operations 

available on an annual basis. The data for these firms come from Compustat and cover the full 

panel of U.S. public firms annually. This data contains a wide range of organizational 

characteristics, such as total assets, capital expenditure, cash flow, and income, allowing us to 

examine organizational factors that might affect updating decisions. The data’s temporal 

dimension also enables us to study the effects of financial changes within organizations. 

However, using this data source significantly reduces the sample size, given that only a small 

fraction of organizations in the sample are public firms. 

Additional organizational characteristics are relevant to cybersecurity. The scale and 

complexity of an organization’s IT operations are measured by the number of personal 

computers owned, the number of IT staff, the IT budget, and the software budget from Harte 

Hanks for 2017. Data from Harte Hanks also measures whether a subset of organizations 

outsourced their IT operations between 2005 and 2009.12  

To examine if data breach disclosures by organizations in the same geographic or 

industry sectors prompt others to secure their software, the data is matched with data from 

Privacy Rights Clearinghouse’s Data Breach Chronology, which is, to our knowledge, the most 

comprehensive public source for breach information. In the U.S., data breach notification laws 

are enacted across all states, with most states adopting these laws in 2005 and 2006. This data 

source aggregates disclosures from media, state attorneys general offices, and breach disclosure 

trackers. It includes 2,366 breaches reported from 2005 to 2018, detailing the organization, 

disclosure date, state, and industry. For 63% of these breaches, the number of affected records 

was also reported. 

 
11 Taken on August 28, 2018. 
12 Ideally, we would have liked to have these variables for every organization year from 2000 to 2018, matching the 
span of our server usage panel. However, Harte Hanks expanded their data collection gradually over time, and data 
in early years had limited mapping with our panel. The firm also only compiled data on IT outsourcing for a select 
group of organizations during 2005-2009. 
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4.4. Website Characteristics 

To gauge an organization’s website traffic, we obtained Alexa’s traffic rankings for the 

top one million websites annually from 2010 to 2018.13  

The IP address for a website enables the determination of whether an organization’s 

website server software is likely cloud-based. The IP addresses are publicly available for 

Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform.14 

For a subset of the organizations’ websites in the dataset, we have data on the web 

technologies used from 2016 to 2018 gathered from the HTTP Archive, which analyzes 

websites’ technical attributes using an open-source tool developed by Wappalyzer.15 The data 

captures technology categories fundamental to website architecture and those supporting 

monetization and e-commerce, such as marketing automation and payment processors. This 

information helps us construct proxies for the websites’ technical complexity and the 

organizations’ intent to monetize their websites, with the number of web technologies indicative 

of technical complexity and monetization tools suggesting a significant value at risk from 

security vulnerabilities. 

Below, we look at our three main measures of interest—prevalence of security vulnerabilities 

in installed and actively used server software, the determinants of firm decisions regarding whether to 

install software updates, and the responsiveness of firms to attributes of the updates released—and 

offer the sample construction, empirical strategy, results, and policy implications for each. 

5. Prevalence 

5.1. Sample Construction 

We apply two restrictions to the server usage panel dataset to study the prevalence of 

severe security vulnerabilities in organizations using Apache. First, the data set retains only the 

observations where Apache was used as the server software, excluding data related to other 

server software like IIS and Nginx. Second, the analysis applies only to observations where the 

 
13 We are unable to obtain this data before 2010. 
14 We used snapshots of IP addresses associated with AWS, Microsoft Azure, and Google Cloud Platform taken on 
March 25, 2020, August 13, 2023, and August 14, 2023, respectively. Historical IP ranges of these cloud services 
are not available to the best of our knowledge. 
15 Ideally, we would have liked to have these variables for every organization-year from 2000 to 2018, matching the 
span of our server usage panel. The HTTP Archive, however, only began applying Wappalyzer’s analysis tool to 
extract the technologies present on websites starting in 2016. 
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complete Apache version number has been captured in the format of three numbers separated by 

dots. Although the ASF recommends that Apache respond to requests by revealing its full 

software version number, sometimes organizations either do not display the Apache version 

number or only show the major version, likely to conceal the exact software version they are 

using. The complete version number is crucial for mapping each version to its associated 

vulnerabilities. Applying these restrictions yields 4.9 million organization-month observations 

from 150,836 organizations. Creating the sample for the prevalence analysis requires combining 

this refined server usage panel with data on Apache version characteristics, such as the number 

of reported, disclosed, and fixed vulnerabilities over time. Summary statistics of this sample are 

provided in Table 2. 

5.2. Empirical strategy 

Analyzing prevalence across organizations requires aggregating at the monthly level and 

utilizing line plots to document the extent and distribution of security vulnerabilities in the 

Apache server software used by organizations from 2000 to 2018. These plots show the 

proportions of organizations using Apache with reported, disclosed, and fixed severe security 

vulnerabilities each month. 

Analyzing the proportion of organizations with reported vulnerabilities is informative 

because these vulnerabilities are known to at least a small group of security experts, and the 

proportion represents the stock of organizations with vulnerable server software. Assessing the 

proportion with publicly disclosed vulnerabilities is critical; malicious parties could easily 

exploit this information to target organizations using server software with these vulnerabilities, 

thus highlighting the pool of organizations at risk of attack. Lastly, examining the proportion 

with fixed vulnerabilities sheds light on the stock of organizations that are slow to apply patches, 

providing empirical evidence contributing to the debate on the benefits and costs of mandated 

vulnerability disclosures. 

5.3. Results 

Figure 1(a) depicts the proportion of organizations using Apache versions with reported 

severe security vulnerabilities over time. This plot is generated by aggregating across 

organizations the binary indicator variable, 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑௜௧, which signifies whether 

severe security vulnerabilities have been reported for an organization-month. The figure 
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demonstrates that a significant fraction of organizations’ servers operated with these 

vulnerabilities throughout the sample period. Over almost 20 years, the proportion of firms 

operating with these vulnerabilities averaged 68%, reaching nearly 100% between December 

2015 and June 2017. This peak corresponds with the discovery of a critical security vulnerability 

(identifier: CVE-2017-7679) in a module responsible for assigning content metadata to HTTP 

responses. This finding indicates a high prevalence of organizations using Apache with known 

vulnerabilities. 

Figures 1(b) and 1(c) further decompose Figure 1(a) into the proportions of firms with 

reported but undisclosed vulnerabilities and those with reported and disclosed vulnerabilities, 

respectively. This analysis helps assess whether the high prevalence of known vulnerabilities 

was due to slow disclosures by the ASF or organizations continuing to use vulnerable software 

even after disclosures. 

As shown in Figure 1(b), no organizations reported undisclosed vulnerabilities for most 

months, suggesting that disclosures occurred swiftly after reports within the same month. In 

some instances, disclosures did not occur in the same month as the reports but were still 

relatively prompt. This corresponds to the spikes, or the rapid increase and decrease in the 

proportion of organizations with undisclosed vulnerabilities observed between 2002 and 2010. 

One exception is from December 2015 to June 2017, when a significant proportion of 

organizations were affected by the reported but undisclosed vulnerability CVE-2017-7679. The 

ASF received this report in November 2015 but did not disclose and fix it until June 2017. 

In contrast to Figure 1(b), Figure 1(c) aligns closely with Figure 1(a), indicating that most 

organizations operating vulnerable Apache software did so not because of delayed disclosures by 

the ASF but because they continued to use the vulnerable software after disclosures were made. 

Figure 2(a) depicts the proportion of organizations using Apache versions with disclosed 

severe security vulnerabilities over time. The line plot is identical to that in Figure 1(c). It is 

generated by aggregating the binary indicator variable, 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑௜௧, which signifies 

whether severe security vulnerabilities have been disclosed for an organization-month. The 

figure shows that a significant fraction of organizations’ servers operated with these 

vulnerabilities throughout the sample period. Over nearly 20 years, the proportion of firms 

operating with these vulnerabilities averaged 60%, peaking at 98% in October 2014. This peak 

corresponds to discovering a critical security vulnerability (identifier: CVE-2004-0885) in a 
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module responsible for strong cryptography. The finding suggests a high prevalence of 

organizations using Apache with known and disclosed vulnerabilities. While the exploitability of 

these vulnerabilities depends on the precise configuration of each firm’s server configuration, the 

high prevalence of vulnerabilities suggests that firms are operating outdated and potentially 

insecure server software. 

Figures 2(b) and 2(c) further decompose Figure 2(a) into the proportions of firms with 

disclosed but unfixed vulnerabilities and those with disclosed and fixed vulnerabilities, 

respectively. This analysis helps to assess whether the high prevalence of disclosed 

vulnerabilities was due to the ASF not offering fixes or because organizations continued to use 

vulnerable software even after fixes were available. The former would suggest security 

mismanagement on the part of the ASF, which would call for policies for better governance of 

software developers. The latter would suggest security mismanagement by the organizations 

themselves, which would call for policies that promote more effective patching behaviors. 

Although a substantial number of organizations dealt with disclosed vulnerabilities 

without fixes between 2003 and 2005, as shown in Figure 2(b), almost no organization faced 

disclosed but unfixed vulnerabilities for most months from 2006 to the end of the sample period. 

This indicates that the ASF has become more diligent and effective in managing disclosures and 

fixes as it has matured. 

In contrast to Figure 2(b), Figure 2(c) is closely aligned with Figure 2(a). Just as with 

Figures 1(a), (b), and (c), this shows that most organizations operating vulnerable Apache 

software did so not because the ASF delayed fixes but because they continued to use the 

vulnerable software after fixes were made available.  

Figure 3 further dissects Figure 2(c), displaying the fraction of organizations using 

Apache versions with one or more disclosed and fixed severe security vulnerabilities. The blue 

line plot in Figure 3 is identical to the line plot in Figure 2(c), generated by aggregating the 

binary indicator variable.  𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧, This signifies whether the Apache version used 

by the organization that month had severe security vulnerabilities already fixed in newer 

versions. Alarmingly, 57% of organizations in the sample used Apache versions with disclosed 

severe security vulnerabilities in which fixes were potentially available. Yet these organizations 

did not adopt the fixed software. The proportion of these organizations almost never fell below 

20% throughout the sample period.  
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Additionally, Figure 3 shows that many organizations did not adopt fixed software. The 

variable captures the number. 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧. On average, organizations utilized 

Apache versions with two fixed severe vulnerabilities; a notable proportion operated with six or 

more such vulnerabilities. This highlights a considerable issue with organizations’ inaction. Apache 

fixed the software, but the companies didn’t make the local patches necessary to complete the fix. 

Figure 3 plots the fixed release dates, represented by vertical dotted lines. For example, in 

July 2006, the ASF released Apache 1.3.37, Apache 2.0.59, and Apache 2.2.3. These releases 

fixed a severe vulnerability (identifier: CVE-2006-3747) that allows remote attackers to cause a 

denial-of-service attack. The red oval in Figure 3 highlights the update window following the 

July 2006 release. A closer examination of that update window reveals that many organizations 

took months or even years to update to those releases. The fraction of organizations using 

problematic versions of Apache peaked at 92% following the release, but the rate declined by 

only 1.7% per month over the next three years. By mid-2009, over 30% of organizations were 

still operating vulnerable versions of the Apache server software. 

5.4. Policy implications 

The empirical results on the prevalence of Apache vulnerabilities offer abundant policy 

implications. The analysis reveals that the ASF has generally been prompt in disclosing and 

addressing vulnerabilities upon their discovery. Instances where severe vulnerabilities remained 

undisclosed for more than two months post-reporting are scarce in the dataset. Additionally, 

while there was a period between 2003 and 2005 during which the ASF took longer to patch 

disclosed vulnerabilities, there has been a marked improvement in its security practices since 

2006, with such instances becoming exceedingly rare. Their actions align with Arora, Caulkins, 

and Telang's (2006) recommendation to disclose vulnerabilities quickly to accelerate the 

development of patches and updates. 

Conversely, the results highlight a significant risk linked to quick and/or compulsory 

disclosure stemming from users’ delayed actions in applying available fixes to vulnerable 

software. Although swift disclosure may motivate software developers to produce fixes more 

quickly, it also risks leaving many users who are slow to respond susceptible to exploitation by 

malicious entities. 
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6. Determinants of Fixing Vulnerabilities 

6.1. Sample Construction 

To study the determinants of organizational differences in vulnerability prevalence, we 

combined the analysis sample for prevalence with various organizational and website 

characteristics that serve as explanatory variables. Table 2 shows summary statistics for the 

merged sample used in this section for analyzing the determinants of vulnerabilities in firms’ 

server software. 

Key outcome variables are 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ and 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧, which 

capture the extent and number of fixed severe vulnerabilities in the Apache versions 

organizations use. 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ is the binary indicator variable that indicates whether 

severe security vulnerabilities in the Apache version used by the organization were already fixed 

in the given month. 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ is a count variable, tallying the number of fixed 

severe security vulnerabilities in the Apache version used by the organization in the given 

month. These variables are the best at capturing differences in organizations’ actions or inactions 

regarding updating and keeping their software secure compared to the number of reported or 

disclosed vulnerabilities, which are also influenced by the actions of the ASF. 

A range of explanatory variables captures the cost of patching, as motivated by August 

and Tunca (2006). The binary indicator variable 𝑛𝑒𝑤𝑈𝑠𝑒𝑟௜௧ signifies whether the observation 

represents the first instance of the organization’s website using Apache, as captured by the IA. 

Unlike incumbent users of server software, new users of Apache are not constrained by previous 

technical investments and should, therefore, face lower costs when adopting the latest, 

vulnerability-free software versions. The variables 𝑃𝐶𝑠௜, 𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡௜, and 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡௜ 

reflect the number of computers, the IT budget, and the software-specific budget an organization 

has at a given cross-section, retrieved from [??] the Harte Hanks data from 2017. These variables 

proxy for the overall scale and complexity of IT operations within an organization. Specifically 

for the technical complexity of the website that the server software hosts, we utilize HTTP 

Archive’s website technology data to construct variables 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠௜ and 𝑡𝑒𝑐ℎ𝑠௜ to denote 

the number of technology categories (e.g., JavaScript Frameworks, Marketing Automation) and 
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the individual technologies (e.g., jQuery, Google Analytics) embedded within the website.16 The 

variables 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ and 𝑐𝑙𝑜𝑢𝑑௜௧ indicate whether the organization has outsourced its IT 

operations and whether the server software was likely hosted on a cloud provider, AWS, Azure, 

or Google Cloud.17 Outsourcing and cloud hosting reduce an organization’s day-to-day costs of 

monitoring and securing software, as many of the maintenance tasks are delegated to third 

parties. 

A few variables reflect both the cost of patching and the value at risk, allowing us to 

evaluate how organizations balanced the cost versus the benefit of patching. One such variable is 

ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐௜, which is a binary indicator variable that captures whether a website experienced 

high traffic based on Alexa rankings.18 Another is 𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜, a binary indicator variable 

determining whether a website has embedded monetization technologies for e-commerce, 

marketing automation, and payment processing.19 A high-traffic website or an e-commerce site is 

valuable to an organization, but patching is also more expensive due to the potential for disrupted 

services. 

Additional variables reflect the value at risk from not patching, which was also motivated 

by August and Tunca (2006). These include binary indicator variables 𝑓𝑖𝑛𝑎𝑛𝑐𝑒௜, ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒௜, 

and 𝑔𝑜𝑣𝑡௜For organizations in the finance or healthcare sectors or public administration. These 

sectors are likely to process highly sensitive personal data, representing an exceptionally high 

value at risk. This also includes 𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧ and 𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧, which 

capture the number of data breaches in the same state or industry as the organization under 

observation in a given month. The variables 𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧ and 

𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧ capture the total number of personal records reported to have 

been compromised in those breaches. While data breaches do not directly increase the value at 

 
16 We observe these technology categories and technologies embedded for only a few organizations between 2016 
and 2018. We use the total number observed during that period for each organization so each variable only has the 
organization subscript 𝑖. 
17 We observe outsourcing status for only a few organizations between 2005 and 2009. We define 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑖𝑛𝑔௜=1 
if the organization has outsourced at any point during 2005—2009 so the variable only has the organization 
subscript 𝑖. We also define a binary indicator variable 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑖𝑛𝑔𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ to indicate whether outsourcing 
information is missing for an organization. This variable will help us to keep observations with missing outsourcing 
information in regressions, allowing us to preserve a relatively large sample size and statistical power. 
18 We have Alexa rankings from 2010 to 2018. We define a website as high traffic if it has had a ranking above 
100,000 at any point during 2010—2018. 
19 This variable is defined as 1 if the website has embedded any of the technology categories “analytics,” “tag 
managers,” “advertising networks,” “marketing automation,” “e-commerce,” and “payment processors” during 
2016—2018. 
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risk for organizations in the same state or industry, they could heighten the awareness of the 

value at risk for these organizations. Additionally, the estimation includes standard 

organizational characteristics such as employment, revenue, and whether the organization was 

publicly listed. For publicly listed firms, additional variables are included, such as the firm’s 

total assets and income each year.  

6.2. Empirical Strategy 

A linear probability model can estimate how different organizational and website 

characteristics affect whether the organization used an Apache version with fixed severe security 

vulnerabilities. The endogenous variable is 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧. The regression specification is 

given by: 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ = 𝛽଴ + 𝛽ଵ𝑋ଵ,௜௧ + ⋯ + 𝛽௞𝑋௞,௜௧ + 𝛿௧ + 𝜖௜௧, (1) 

 

where 𝑋ଵ,௜௧, … , 𝑋௞,௜௧ represents the explanatory variables, including organizational and website 

characteristics, and delta sub t denotes month-fixed effects. The inclusion of month-fixed effects 

is motivated by the patterns observed in Figure 3, which show that the months in which fixes 

were released resulted in significant shifts in the prevalence of fixed severe vulnerabilities 

among organizations. 

A Poisson regression model can estimate how different organizational and website 

characteristics influence the number of fixed severe security vulnerabilities in the Apache 

version used by organizations. The endogenous variable is 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧. Under this 

model, 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ is presumed to follow a Poisson distribution, with the parameter 

𝜆௜௧ = 𝐸(𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧) being a log-linear function of the explanatory variables 

𝑋ଵ,௜௧, … , 𝑋௞,௜௧: 

log (𝐸(𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧)) = 𝛽଴ + 𝛽ଵ𝑋ଵ,௜௧ + ⋯ + 𝛽௞𝑋௞,௜௧ + 𝛿௧ + 𝜖௜௧. (2) 

Like the linear probability includes organizational and website characteristics, and delta sub t 

denotes, … , 𝑋௞,௜௧ includes organizational and website characteristics and delta sub t denotes 

month-fixed effects.20 

 
20 While the outcome variable 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ shows evidence of overdispersion (it has a mean of 2.012 
and a standard deviation of 2.312 as shown in Table 3), a fixed effects Poisson model is robust to overdispersion and 
is preferred over a fixed effects negative binomial model due to its robustness to both over- and underdispersion, 
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6.3. Results 

Table 4 presents regression results for the linear probability model and the Poisson model 

across different combinations of explanatory variables. Columns (1) and (3) show the regression 

results for the linear probability and Poisson models, respectively, when only the most well-

populated explanatory variables are included. This approach enables the preservation of a large 

sample of organization months. Columns (2) and (4) introduce less well-populated explanatory 

variables. Lastly, Columns (3) and (6) show the results from adding organization-fixed effects to 

both models. Although the regressions utilize two distinct outcome variables, and sample sizes 

for each specification differ significantly, the results are remarkably consistent across the various 

specifications. Appendix Table A4 includes variables from Compustat about public firms, which 

effectively restricts the sample to these firms. The results from public firms are very similar to 

those from the full sample. 

Variables capturing the cost of patching are good predictors of both the presence of fixed 

severe vulnerabilities and the number of fixed severe vulnerabilities. Being a new user is 

associated with a decrease of 3.3 to 4.7 percentage points in the probability of having any fixed 

severe vulnerabilities and with a 11.7% to 17.6% reduction21 in the number of fixed severe 

vulnerabilities. Cloud-hosting is linked to a 10.9 to 19.9 percentage point decrease in the 

probability of having fixed severe vulnerabilities and a 33.9% to 41.3% decrease22 in the number 

of fixed severe vulnerabilities. Both variables are significant at the 1% level across all 

specifications. While other variables that capture the cost of patching do not provide estimates as 

significant or consistent across different specifications, the direction of the estimates generally 

supports the hypothesis that organizations with higher patching costs tend to have a higher 

prevalence of vulnerabilities. Organizations with more PCs are more likely to have fixed severe 

vulnerabilities and a greater number of them, though the effect is not economically significant. 

Similarly, organizations that have not outsourced their IT operations are more likely to have 

fixed vulnerabilities and more of them, compared to those that have outsourced or about which 

we lack information. Evidence regarding website technical complexity is inconclusive, as 

 
heterogeneity in the variance-mean relationship across observations, violations of conditional independence, and 
serial correlation, which the fixed effects negative binomial model is not robust to (Wooldridge, 1999). 
21 From Column (6) of Table 4, 1 − exp(−0.124) = 11.7%. From Column (4), 1 − exp(−0.194) = 17.6%. 
22 From Column (5) of Table 4, 1 − exp(−0.414) = 33.9%. From Column (6), 1 − exp(−0.532) = 41.3%. 
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estimates for 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠௜ and log (𝑡𝑒𝑐ℎ𝑠௜ + 1) are close to zero for the full sample and do 

not have a consistent direction for the public firms. 

For variables that capture both the high cost of patching and the high value at risk, this 

evidence suggests that organizations are more concerned about the cost of patching than the 

value at risk. The estimates for ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐௜ are positive and highly significant across all 

specifications. These estimates indicate that websites with high traffic are 2.6 to 5.0 percentage 

points more likely to have fixed severe vulnerabilities and at least 3.7% more of those 

vulnerabilities.23 Although the estimates for 𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜ are less significant, the positive 

direction of these estimates is consistent with the hypothesis that the cost considerations of 

patching outweigh the considerations regarding value at risk. 

The results also suggest that the value at risk does not have a strong association with the 

prevalence of fixed severe vulnerabilities. Although the finance, healthcare, and public 

administration sectors are all likely to handle sensitive personal data, their impact on 

vulnerability prevalence does not have a consistent direction. Data breach disclosures within the 

same state or industry have an economically insignificant impact with inconsistent directionality. 

We have considered a range of organizational characteristics, such as revenue and whether the 

firm is publicly listed. Appendix Table A4 includes various characteristics of publicly listed 

firms, such as income and cash flow. However, none of these variables appear to be significant. 

The only notable finding is that larger organizations are more likely to have fixed severe 

vulnerabilities present in their severe software and to have a greater number of them. 

In addition, the estimates suggest that a significant amount of unobserved organizational 

factors also influenced vulnerability prevalence. While the cost of patching is a strong predictor 

of prevalence, the magnitude of each individual estimate is small compared to the overall 

prevalence of vulnerabilities. Moreover, despite including a wide array of observed 

organizational and website characteristics, the explained variance in the outcome variable 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧, as indicated by the R-squared value, is only moderate. In Column (3) of 

Table 4, the inclusion of organization-fixed effects substantially increased the R-squared value. 

These results suggest that unobserved variations between organizations are likely important 

drivers of differences in prevalence. 

 
23 From Column (5) of Table 4, exp(0.036) − 1 = 3.7%. 
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6.4. Policy implications 

These results carry substantial policy implications. First, they relate to theoretical models 

concerning user incentives for patching, such as those by August and Tunca (2006). The cost of 

patching and the value at risk are crucial elements of these models that affect the optimality of 

different incentive schemes to encourage users to patch vulnerable software. The findings 

suggest that organizations with lower patching costs are more likely to patch. At the same time, 

those with a higher value at risk do not necessarily exhibit a greater likelihood of patching. 

Indeed, the findings imply that policies aimed at increasing the perceived value at risk, such as a 

usage tax, may be less effective than policies aimed at reducing the cost of patching, such as 

patching rebates. 

The results could also assist policymakers in developing targeted policies. For instance, 

the findings suggest that data breach disclosures or marketing campaigns designed to raise 

awareness of the value at risk from cyberattacks are unlikely to be effective. In contrast, policies 

that reduce the cost of patching, such as providing IT training, may prove more effective. Among 

these policies, workshops or subsidies that help organizations migrate their software services to 

third-party professionally managed services and the cloud could significantly reduce the 

prevalence of vulnerabilities. 

Furthermore, the organizational effect is an important consideration for policymakers, as 

organizations may exhibit persistence in their security management practices. This persistence 

suggests that policy interventions targeting organizations could have limited effectiveness. 

7. Responsiveness 

7.1. Sample Construction 

Section 6 examines cross-sectional differences in the prevalence of vulnerabilities and the 

determinants of organizations’ willingness to implement patches. However, the analysis in that 

section does not provide insights into the determinants of how quickly organizations respond to 

new updates that address security threats post-release. The diversity of factors affecting the speed 

of responsiveness may align with those influencing vulnerability prevalence at the cross-section; 

however, this topic deserves its own investigation. Such an analysis could uncover additional 

factors that enable organizations to address severe vulnerabilities with software updates more 
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promptly at certain times than at others—for example, the characteristics of the updates 

themselves. 

The approach involves analyzing the effects of various characteristics of the updates and 

the characteristics of the organization and its website on the time taken to adopt vulnerability 

fixes. To construct the sample for this analysis, we identify the relevant time periods following 

the release of each critical update for the software versions used by organizations within the 

previous sample to compile a targeted analysis sample for responsiveness. 

Figure 4 provides a visual explanation of the construction of the responsiveness sample. 

Panel (a) displays observations from the determinants of vulnerabilities sample for the firm 

Adobe. Each observation details the organization’s identifier 𝑖 (“adobe.com”), the month of IA 

capture 𝑡, and the version of Apache. The sample also includes other organizational and website 

characteristics not displayed in Panel (a). The dataset records Adobe’s use of Apache from 

March 2001 to December 2002. These observations will be utilized to construct observations in 

the responsiveness sample pertaining to Adobe. It should be noted that, due to the irregular 

capture frequency of the IA, there are gaps in our observations, such as in February 2002 and 

April 2002 for Adobe. 

It is possible to know whenever a new version that fixes vulnerabilities in a particular 

Apache version becomes available based on the data on Apache security vulnerabilities. Between 

March 2001 and December 2002, two releases addressed the severe vulnerabilities in the Apache 

versions Adobe used. One of them was the release of Apache 1.3.24 in March 2002, which fixed 

a severe vulnerability (identifier: CVE-2002-0061) in the version in use, Apache 1.3.19, that 

allowed remote attackers to execute arbitrary commands. Panel (a) shows that by July 2002, 

Adobe.com had been updated to a version above 1.3.24, which fixed the vulnerability.  

Using the relevant observations from Panel (a) for this updating event, as shown in the 

red box in Panel (a), we can construct one observation in the responsiveness sample. This 

observation is shown in the red box in Panel (b). The 𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥ variable represents the 

number of months it took the organization to adopt the fix, where the 𝑟 subscript indexes the 

release (version 1.3.24 in March 2002). The 𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥ variable in this case equals 4. The 

𝑓𝑖𝑥𝑒𝑑௜௥The variable is a binary indicator, where it equals 1 if the organization adopts the fix and 

equals 0 if it does not adopt the fix by the final recorded observation (i.e., this updating cycle is 

right-censored). 𝑓𝑖𝑥𝑒𝑑௜௥ in this case is 1. The variable 𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ represents the number of 
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severe vulnerabilities that the new update could fix for the version in use, which equals 1 in this 

case.  

Another release that addressed severe vulnerabilities for Adobe was the release of 

Apache 1.3.27 in October 2002, which fixed two severe vulnerabilities (identifiers: CVE-2002-

0839 and CVE-2002-0843) in the version in use, Apache 1.3.26. We only observed Adobe’s 

Apache usage up to December 2002, and no updates occurred until then, as shown in the green 

box in Panel (a). This allows us to construct another observation in Panel (b), where 

𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥ is recorded as 2, and 𝑓𝑖𝑥𝑒𝑑௜௥ is set to 0 to reflect that the updating cycle is right-

censored. The number of severe vulnerabilities fixed in that release, 𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥, is 2. 

Another point to consider in the sample construction is handling gaps in IA captures. 

Although Figure 4 indicates gaps in IA captures for Adobe in February 2002 and April 2002, 

these did not affect the sample construction. We were able to deduce the time to fix it precisely. 

Such precision is not attainable when significant gaps in an updating cycle occur. An updating 

cycle is observed to start with the release that fixed severe vulnerabilities in the version in use 

and is deemed to end with the first observed use of a version above that release. Suppose 

significant gaps are present within this cycle. In that case, it is conceivable that the organization 

might have been using the updated version for a substantial period before it was recorded in the 

data. Hence, the sample only uses updating cycles for which there are IA captures at least once 

every two months on average to construct observations for the responsiveness sample. 

In addition to the variables mentioned above, the analysis includes a range of additional 

variables to capture the characteristics of the updates and the organization and website 

characteristics in the responsiveness sample. Table 5 presents the summary statistics for this 

sample. 

Numerous variables represent the characteristics of the updates for each release that fixed 

severe vulnerabilities. The variable 𝑛𝑜𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ represents the number of non-severe 

vulnerabilities release 𝑟 fixed in organization 𝑖’s version in use at the time of the release. 

Meanwhile, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠௜௥ represents the cumulative number of feature changes between 

the version organization 𝑖 used and release 𝑟. Fixes for minor vulnerabilities and feature changes 

can be valuable, but they can also add complexity and cost to software updates.  

The variable 𝑠𝑎𝑚𝑒𝑀𝑎𝑗𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛௜௥ is a binary indicator that equals one if the version in 

use and release 𝑟 belong to the same major version (e.g., the version in use is 1.3.19, and the fix 
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is released in 1.3.24) and equals 0 otherwise (e.g., the version in use is 1.3.19 and the fix is 

released in 2.0.37). Updates within the same major version represent small incremental changes 

that are less costly to install.  

The binary indicator variables ℎ𝑖𝑔ℎ𝐼𝑚𝑝𝑎𝑐𝑡௜௥ and ℎ𝑖𝑔ℎ𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦௜௥ indicate that the 

update fixed vulnerabilities with high impact and high exploitability, respectively. High-impact 

vulnerabilities, which scored 10 out of 10 in impact according to NIST’s scoring rubric, could 

result in total disclosure of information, a total compromise of system integrity that allows 

attackers to modify any files, and a complete shutdown of the system. High exploitability 

vulnerabilities, which scored 10 out of 10 in exploitability by the same rubric, would allow 

attackers to attack over the network without authentication requirements, and the attack has low 

complexity once an attacker has gained access to the target system.  

The variable 𝑛𝑜𝑡𝑂𝑆𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐௜௥ is a binary indicator that indicates that at least one of the 

severe vulnerabilities fixed by the release is not specific to a particular operating system, making 

the vulnerability more general. 

A variable, 𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥, represents the time the organization took to update to the 

preceding release that [?] addressed severe vulnerabilities. It investigates the persistence of 

organizations in their vulnerability patching practices. If organizations were not persistent, those 

that were slow to patch in the previous updating cycle should aim to patch more rapidly in the 

current cycle to compensate. Conversely, suppose organizations are burdened with consistent 

organizational costs, such as a poorly organized IT department. In that case, they will likely 

exhibit similar delays in the current cycle if they were slow previously. 

The responsiveness sample also includes the range of organization and website 

characteristics, for example, 𝑛𝑒𝑤𝑈𝑠𝑒𝑟௜௧ and 𝑃𝐶𝑠௜. Whenever these variables carry a time 

subscript, the value of the variable on the release date is used to fill that variable in the 

responsiveness sample.  

7.2. Empirical Strategy 

Because the outcome of interest is a time-to-event variable—the amount of time from the 

release until the organization adopts the release—survival models can estimate what predicts 

faster or slower patching. We first estimate the standard Cox proportional hazards regression 

model, specified as follows: 
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ℎ௜௥(𝑡) = ℎ଴(𝑡)𝑒𝑥 𝑝൫𝑏ଵ𝑋ଵ,௜௥ + 𝑏ଶ𝑋ଶ,௜௥ + ⋯ + 𝑏௝𝑋௝,௜௥൯, (3) 

where ℎ௜௥(𝑡) is the hazard function, representing the expected number of updates to the fixed 

version given that the vulnerable version has survived for 𝑡 months. ℎ଴(𝑡) is the baseline hazard 

and represents the hazard when all the explanatory variables 𝑋ଵ,௜௥ , … , 𝑋௝,௜௥ are equal to zero. If 

some explanatory variables carry a time subscript 𝑡 or 𝑦 that varies within an updating cycle, the 

value of the variable on the release date is used in the regressions. 

While the model described above examines differences in the rates at which 

organizations patch their vulnerable server software based on observed updates and 

organizational and website characteristics, it does not account for unobserved differences in the 

organizations’ security management practices, which could lead to reverse causality issues. 

Specifically, the model in Equation (3) assumes the baseline hazard. ℎ଴(𝑡) is the same for all 

organizations. However, organizations that are persistently slow to update for unobserved 

reasons are more likely to use older versions of Apache, which have more severe security 

vulnerabilities that need fixing. If we assume a uniform baseline hazard across all organizations 

and estimate a Cox model, the estimate for 𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ would likely be biased downward. 

Consequently, we might incorrectly conclude that a release addressing a greater number of 

severe security vulnerabilities would be associated with a longer time to adopt the release. 

To control for unobservable differences in organizations’ security management practices, 

the preferred specification is a stratified Cox model, which allows each organization to have a 

different baseline hazard: 

ℎ௜௥(𝑡) = ℎ଴௜(𝑡)𝑒𝑥𝑝 ൫𝑏ଵ𝑋ଵ,௜௥ + 𝑏ଶ𝑋ଶ,௜௥ + ⋯ + 𝑏௝𝑋௝,௜௥൯, (4) 

where the 𝑖 subscript in ℎ଴௜(𝑡) denotes stratum for organization 𝑖. Under this model, the effect of 

a variable is identified by the changes to that variable within an organization across different 

releases. 𝑟.  

The estimated effect of update characteristics on the time-to-fix from Equation (5) 

is causal because the reporting, disclosures, and release of fixes for severe security 

vulnerabilities and the characteristics of each update released are plausibly exogenous to an 

organization’s IT staff. While formally testing exogeneity assumptions is generally challenging, 

the crucial assumption in this context is intuitive. Most web developers and IT professionals are 
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not directly involved in developing Apache server software or in its vulnerability handling 

process. Although they can potentially influence the process through bug discovery and 

reporting, and the more they interact with the software, the more likely they are to find bugs, the 

influence of any single organization (aside from the ASF) is negligible compared to the total 

global interactions with the software. To ensure that individual organizations’ actions do not 

disproportionately affect the vulnerability handling and release process of Apache server 

software, we examined the data on who was credited with discovering or reporting each 

vulnerability to the ASF. Aside from the ASF Security Team staff, there is almost no overlap in 

the names and organizational affiliations of the reporters. 

7.3. Results 

Estimation results are presented in Table 5 and provide evidence that the stratified Cox 

model is preferable. Column (1) displays the standard Cox regression results, using only update 

characteristics as explanatory variables. As expected, the estimate for 𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ is biased 

downward due to unaccounted-for organizational effects. Column (2) incorporates more 

comprehensive organization and website characteristics, and Column (3) includes additional, less 

populated organizational and website characteristics. As these controls are added, the coefficient 

becomes increasingly positive. This suggests that accounting for organizational effects is crucial 

for mitigating reverse causality issues and ensuring correct inferences. Column (4) presents the 

estimates from the stratified Cox model, stratified at the organization level, using only a small 

subset of explanatory variables. Column (5) presents the stratified Cox model with additional 

controls for time-varying organization characteristics. In both specifications, the estimates for 

𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥  are large, positive, and highly significant. This suggests that an increase in the 

number of severe vulnerabilities a release fixes leads organizations to respond to the release 

more quickly. 

Another piece of evidence supporting the effectiveness of the stratified Cox model in 

controlling for unobserved organizational effects comes from the estimates of the variable. 

𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥. This variable captures the persistence of organizations in their patching 

behavior between adjacent updating cycles. The estimates for this variable are large, negative, 

and highly significant in the standard Cox models. They suggest that a one-month increase in the 

time to fix in the previous updating cycle for an organization would be associated with at least a 
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1.8% decrease in the expected hazard of updating in the current cycle.24 The estimates become 

economically negligible in the stratified Cox models, although they retain statistical significance. 

Based on the preferred specification, the stratified Cox models, organizations have 

varying levels of responsiveness to different characteristics of updates. For the same reasons 

discussed in Section 7.2, the estimates are causal. 

The estimates show that organizations are responsive to fixing severe vulnerabilities that 

enhance the security of their software. An additional severe vulnerability being fixed in a new 

release would result in a 7.6% to 18.5% increase in the expected hazard of updating to that 

release. 25 

Organizations are averse to characteristics of updates that increase the complexity of 

updating, even when those characteristics offer benefits, such as minor bug fixes and feature 

improvements. An additional non-severe vulnerability being fixed in the new release would 

result in a 6.4% to 9.3% decrease in the expected hazard of updating to the release.26 

Furthermore, a 10% increase in the number of feature changes in the release, relative to the 

version in use, would result in a 0.7% to 0.9% decrease in the expected hazard of updating.27 

This contrast suggests that organizations perceive the benefit of updating to fix severe 

vulnerabilities to outweigh the cost, which is not the case for non-severe bugs and feature 

improvements. 

Moreover, organizations are significantly more responsive to new releases that consist of 

small incremental changes to their existing software, as opposed to major upgrades in 

performance and features. When the release is a minor new version within the same major 

version as the version in use, organizations exhibit a 215.8% to 226.7% higher expected hazard 

of updating compared to releases that are part of a different major version.28 

 
24 From Column (3) of Table 5, 1 − 𝑒𝑥𝑝(−0.018) = 1.8%. 
25 From Column (4) of Table 5,  𝑒𝑥𝑝(0.073) − 1 = 7.6%.  From Column (5) of Table 5, 𝑒𝑥𝑝(0.170) − 1 = 18.5%. 
26 From Column (4) of Table 5,  1-𝑒𝑥𝑝(−0.066) − 1 = 6.4%.  From Column (5) of Table 5, 1 − 𝑒𝑥𝑝(−0.098) =
9.3%. 
 
27 From Column (4) of Table 5,  1 − 𝑒𝑥𝑝 ቀ−

଴.଴ଽସ

ଵ଴଴
∗ 10ቁ = 0.9%.  From Column (5) of Table 5, 1 −

𝑒𝑥𝑝 ቀ−
଴.଴଻ହ

ଵ଴଴
∗ 10ቁ = 0.7%. 

 
28 From Column (4) of Table 5,  𝑒𝑥𝑝(1.150) − 1 = 215.8%.  From Column (5) of Table 5, 𝑒𝑥𝑝(1.184) − 1 =
226.7%. 
 



 33

Furthermore, compared to releases that address highly impactful severe vulnerabilities, 

organizations are more responsive to those that address highly exploitable vulnerabilities. While 

the estimates for high-impact vulnerabilities are not consistently significant, a release that 

addresses highly exploitable severe vulnerabilities is associated with a 26.2% to 31.5% increase 

in the expected hazard of updating to that release.29 

7.4. Policy implications 

The results offer important empirical evidence for the policy debate on designing 

effective vulnerability disclosure policies. These estimates demonstrate that full disclosure is 

unlikely to be optimal. While organizations respond to releases that announce fixes for severe 

vulnerabilities, the evidence suggests they avoid releases disclosing fixes for non-severe ones 

due to the greater costs and complexity of adoption, which outweigh the perceived benefits. 

Thus, a robust vulnerability disclosure policy that aims to minimize vulnerability exposure, 

maximize patching behavior, and enhance societal welfare should consider disclosing fixes for 

severe vulnerabilities but not for minor ones. 

Moreover, the empirical evidence suggests that organizations are very cost-sensitive 

when making vulnerability patching decisions. Announcements of feature improvements could 

increase the perceived costs and complexity of installation. Software developers should 

reconsider how much information about feature improvements to disclose to avoid discouraging 

patching behavior. 

Additionally, developers should consider releasing small incremental updates or 

standalone patches for highly severe vulnerabilities to encourage patching rather than bundling 

the patch with numerous new features in a major release, which could serve as a deterrent. 

Furthermore, when disclosing fixes for severe vulnerabilities in new releases, developers 

should emphasize the exploitability of the vulnerability. This method is likely more effective 

than simply discussing the potential impact if the vulnerability were to be exploited. 

 
29 From Column (4) of Table 5,  𝑒𝑥𝑝(0.233) − 1 = 26.2%.  From Column (5) of Table 5, 𝑒𝑥𝑝(0.274) − 1 =
31.5%. 
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8. Conclusion and Discussion 

This study examined installations of updates to address security vulnerabilities in open-

source server software used by over 150,000 organizations in the United States between 2000 

and 2018. It is the largest data set assembled on security vulnerabilities and updates. The study 

sought to understand a previously unexplored research question: how prevalent are severe 

vulnerabilities in server software, what determines the variance in the installation distribution, 

and how fast do software users respond to the availability of secure versions? Previous research 

on cybersecurity has primarily focused on the role of the software vendors in providing updates 

for vulnerabilities and took for granted that users would automatically implement them, an 

approach that ignores the significant heterogeneity in whether and when software users respond 

to such updates.  

The empirical analysis revealed four critical findings. First, the study finds widespread 

usage of server software with known vulnerabilities by organizations hosting their websites. In 

nearly every month between 2000 and 2018, no less than 19% of the Apache servers in use 

contained a severe security vulnerability. While the exploitability of these vulnerabilities 

depends on various factors, the high prevalence suggests that there may be many opportunities 

for malicious actors to exploit organizations’ web servers.  

Second, the prevalence of vulnerabilities in the software used to host companies’ 

websites is associated more with factors related to the cost of updating than factors related to the 

value of security. For example, new organizations and organizations using cloud-hosting 

solutions, both of which likely lower the costs of utilizing up-to-date software, are less likely to 

have known severe security vulnerabilities in their server software. In contrast, large firms and 

firms with large amounts of IT are more likely to run server software with vulnerabilities -- even 

when fixes are available – possibly due to the complexity and costs related to updating that hefty 

infrastructure. In contrast, firms that stand to lose the most from a cyberattack, such as high-

traffic websites and organizations whose websites have monetization technologies, are 

surprisingly more likely to have vulnerabilities in their software. These findings imply that cost 

considerations for updating often outweigh the value of decreasing the risk of cyberattack when 

firms decide whether to update and when to install software updates. 

Third, observables cannot easily explain a large variation in the prevalence of 

vulnerabilities in company server software. For example, an organization’s industry, geography, 
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and website characteristics do not strongly predict the organization’s routine regarding whether 

to allow vulnerabilities to accumulate or install updates in a timely fashion. Instead, persistent, 

unobservable aspects of organizations explain much of the variation in the presence of 

vulnerabilities. These unobservable factors may include organizational culture, complementary 

technologies, external vendor relationships, or other factors for which observational data cannot 

be easily obtained.  

Finally, some attributes of server software updates lead firms to install updates more 

quickly. A hazard model with stratification accounts for persistent unobservable factors that may 

influence organizations’ update timing. While firms are responsive to updates with security fixes, 

they are slower to install multifaceted and complex updates. Specifically, firms are slower to 

install updates with minor bug fixes and feature improvements.  

These findings inform previous theoretical work on cybersecurity policy. First, scholars 

and policymakers have contemplated mandating the disclosure of software vulnerabilities to 

instigate faster releases of software updates patching vulnerabilities (Arora, Telang, and Xu, 

2008). Our data revealed, however, that organizations are slow and unthorough when installing 

updates. This finding gives reason to be cautious about such a policy. Second, policymakers have 

considered either providing patching rebates to defray the cost of installing updates or taxing 

software users to dissuade low-value firms from using software in insecure ways (August and 

Tunca, 2006). Our finding that the presence of vulnerabilities in server software is associated 

with high costs of updating implies that software update rebates may be more effective at 

increasing cybersecurity practices than policies aimed at increasing the value of updating or 

highlighting the risk of vulnerability. In addition, organizations can take actions that reduce the 

cost of installing updates, such as hosting their website on a cloud-based platform that assists 

with installing updates and decreasing the technological complexity of their website. Finally, a 

long-running theme in cybersecurity literature questions the amount of information software 

vendors should release about vulnerabilities in their software (Mitra and Ransbotham, 2015). The 

results of the hazard model analysis reinforce that software vendors can also design the release of 

software updates in ways that are more likely to have those updates adopted. Specifically, when 

updates fixing severe vulnerabilities are packaged in an update alone, they are more likely to be 

installed in a timely manner than if those updates contain feature updates or minor bug fixes. 
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In addition to informing the previously considered policies, the empirical findings also 

highlight a new avenue for policymakers and managers concerned with cybersecurity. The 

finding that much of the variation in the presence of vulnerabilities is explained by persistent 

unobservable attributes of firms implies that policymakers and managers may wish to focus on 

organizational routines and culture to improve cybersecurity. For example, managers should 

consider if a routine that includes updating at regular intervals is beneficial for their organization. 

The study does have limitations. First, it only examines Apache web servers. While open-

source server software operates on most servers today (Greenstein and Nagle, 2014), installing 

updates on proprietary server software, especially from software vendors that automatically send 

software updates to users, may be different. Extensive and detailed data were available because 

Apache server software is open source, the Apache Foundation is transparent about vulnerability 

reports, and the Apache Foundation documents and releases information on the contents of every 

software update. Proprietary software vendors are less transparent about their products and users. 

Future research on the usage of proprietary software would enable a more complete picture of 

software user behavior in general.  

Second, there are many challenges matching variance in server software decisions at 

organizations with variance in management practices at those organizations. The observed 

routines regarding software updates may reflect broader managerial routines or IT investments. 

While we have attempted to match the data with information in the World Management Survey, 

the overlap in samples provides limited statistical power for analysis, and the select sample of 

matching firms constrains the external validity of any findings. Future researchers should seek to 

find ways to expand on the insights by attempting to understand how managerial practices more 

broadly influence IT and cybersecurity investments.  

This study sets the stage for future research on a variety of cybersecurity-related topics. 

First, while the data highlight the prevalence of vulnerabilities in server software being used and 

some of the factors associated with the presence of these vulnerabilities in organizations’ 

software, more research can be done on factors that instigate changes in cybersecurity practices. 

For example, future research should examine how executive leadership changes, labor market 

changes for IT professionals, and business cycles impact firms’ cybersecurity postures. Second, 

more research should be done on the effect of cybersecurity service vendors on vulnerabilities. 

While this seems like a rich area for research, additional data collection on the timing and usage 
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of these services will be required. Finally, future research should better understand the 

interaction of firm strategy, the competitiveness of firms’ markets, and cybersecurity investment 

decisions. 
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Tables and Figures 

Table 1 Summary of Data Sources 

 Data Variables Coverage Source 
 
Key data source 
(i) Server software 

usage panel of U.S. 
organizations 

Server software name 
(Apache or non-Apache), 
version number, IP address 
for the homepages of 
200,000+ U.S. 
organizations with 50 or 
more employees  
 

Jan 1, 2000--August 1, 
2018; irregular capture 
frequency; 17+ million 
observations 
 

IA 
 

Apache version characteristics 
(ii) Apache security 

vulnerabilities 
Each vulnerability’s 
reporting date, version(s) 
affected, disclosure date, fix 
date and version, and (when 
available) the entity 
credited with reporting  
 

158 vulnerabilities 
reported before or on 
August 1, 2018 

ASF 

(iii) Severity of Apache 
security 
vulnerabilities 

Each vulnerability’s 
severity rating (high, 
medium, or low), and 
breakdown scores including 
impact and exploitability  
 

28 vulnerabilities rated 
high, 123 rated 
medium, and 7 rated 
low 

NIST  

(iv) Apache version 
release dates 
 

Each Apache version’s 
release date  

115 releases between 
2000 and 2018 

Authors’ 
compilation 

(v) Apache version 
feature 
improvements 
 

Each Apache version’s new 
and improved features from 
Apache change logs 
  

 ASF 

Organization characteristics 
(vi) Basic organization 

characteristics 
Location (state), industry 
(NAICS), the estimated 
number of employees, and 
estimated revenue 

Cross-sectional 
snapshot on August 
28, 2018 
 
 

Mint Global by 
Bureau van Dijk 

(vii) 
 

Public firm 
characteristics  

Total assets, capital 
expenditure, depreciation 
and amortization, number of 
employees, cash flow, and 
net income 
 

Yearly panel between 
2000 and 2018 

Compustat 



 43

(viii) Organization’s IT 
operations 

Number of personal 
computers, number of IT 
staff, IT budget, and 
software budget 
 

Cross-sectional 
snapshot for the year 
2017 

Harte Hanks 

(iv) Organization’s IT 
outsourcing 

Whether the organization 
outsourced its IT operations 
sometime between 2005 
and 2009 

Database contains the 
IT outsourcing 
variable yearly 
between 2005 and 
2009 for a small group 
of organizations 
  

Harte Hanks 

(x) Data breach 
disclosures 

Disclosing organization, 
disclosure date, state and 
industry of disclosing 
organization, and (when 
available) number of 
affected records  
 

2,366 data breaches 
disclosed between 
2005 and 2018 

Privacy Rights 
Clearinghouse’s 
Data Breach 
Chronology 

Website Characteristics 
(xi) Website traffic  Alexa’s ranking of top one 

million websites by traffic 
 

Yearly between 2010 
and 2018 
 

Alexa 

     
     
(xii) Cloud-hosting of 

website 
Whether an organization’s 
server software used an IP 
address associated with 
AWS, Microsoft Azure, or 
Google Cloud 
 

Snapshots of IP 
addresses associated 
with AWS, Azure, and 
Google taken on 
March 25, 2020, 
August 13, 2023, and 
August 14, 2023, 
respectively 
 

Amazon, 
Microsoft, and 
Google 

(xi) 
 

Website’s 
technology use 
 

Website’s technology use in 
47 technology categories, 
including analytics, e-
commerce, and web 
frameworks 

Data captured between 
2016 and 2018; we 
consider the website to 
have used a particular 
technology if we 
observe the usage of 
the technology 
anytime during 2016—
2018  

HTTP Archive 
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Table 2 Summary Statistics of the Analysis Sample for Prevalence 

 

 
Notes: The 𝑖 subscript indexes organizations. The 𝑡 subscript indexes months. 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑௜௧, 
𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑௜௧, 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ are binary indicator variables, each indicating whether there 
are severe security vulnerabilities that have been reported, disclosed, or fixed for the Apache version 
observed for the organization-month. 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑௜௧, 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑௜௧, 
𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ are count variables, each counting the number of severe security vulnerabilities 
reported, disclosed, or fixed for the Apache version observed for the organization-month. Appendix Table 
A1 shows the correlation between the variables. 
 
 
  

 
Count Mean STD Min 25% 50% 75% Max 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑௜௧ 4861871 0.679 0.467 0 0 1 1 1 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑௜௧ 4861871 0.599 0.490 0 0 1 1 1 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ 4861871 0.571 0.495 0 0 1 1 1 

𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑௜௧ 4861871 2.362 2.314 0 0 2 4 12 

𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑௜௧ 4861871 2.177 2.366 0 0 1 4 12 

𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ 4861871 2.012 2.312 0 0 1 4 12 
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Table 3 Summary Statistics of the Analysis Sample 
 

Count Mean STD Min 50% Max 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ 4861871 0.571 0.495 0 1 1 

𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ 4861871 2.012 2.312 0 1 12 

𝑛𝑒𝑤𝑈𝑠𝑒𝑟௜௧ 4861871 0.041 0.198 0 0 1 

𝑃𝐶𝑠௜ 3772082 226.842 1347.049 0 56 94659 

𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡௜ 3772082 4.481 114.361 0 0.342 17320.639 

𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡௜ 3772082 0.957 28.86 0 0.06 4476.575 

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠௜ 845817 11.708 4.99 1 11 38 
𝑡𝑒𝑐ℎ𝑠௜ 845817 18.853 14.285 1 16 174 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ 1014195 0.192 0.394 0 0 1 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ 4861871 0.791 0.406 0 1 1 

𝑐𝑙𝑜𝑢𝑑௜௧ 4861871 0.020 0.14 0 0 1 

ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐௜ 4861871 0.083 0.276 0 0 1 

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜ 845817 0.905 0.293 0 1 1 
𝑓𝑖𝑛𝑎𝑛𝑐𝑒௜ 4606217 0.032 0.177 0 0 1 

ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒௜ 4606217 0.095 0.293 0 0 1 

𝑔𝑜𝑣𝑡௜ 4606217 0.016 0.125 0 0 1 

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧ 4861871 0.449 1.299 0 0 18 

𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧ 4861871 2101.489 51360.515 0 0 3000814.02 

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧ 4861871 2.04 3.883 0 0 31 

𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧ 4861871 10051.199 108648.505 0 0 3000001.61 

𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡௜ 4722177 0.953 16.665 0.05 0.175 2458.775 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡௜ 4722177 0.185 2.617 -0.077 0.018 500.362 

𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐௜௬ 4861871 0.022 0.145 0 0 1 

𝑐𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 104601 0.154 0.88 -0.001 0.008 40.145 

𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 104601 8.948 44.567 0 0.73 2200 

𝑡𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 104601 7125.214 66296.384 0 404.427 2209974 

𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 104601 127.295 695.069 0 8.843 27595 

𝑖𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 104601 154.235 1156.658 -21244 5.369 41733 

𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 101723 -0.023 0.663 -63.667 0.055 5.2 

𝑠𝑡𝑎𝑡𝑒௜ 4710191 
     

𝑛𝑎𝑖𝑐𝑠௜ 4606217 
     

 
Notes: All dollar amounts are in millions. All headcounts, including employment and number affected by 
data breaches, are in thousands of people. The 𝑦The subscript indexes years. For public firms, we observe 
their characteristics at the yearly level. Appendix Table A2 shows the correlation between the variables. 
The rest of Table 2's notes apply. 
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Table 4: Regression Results for the Vulnerability Prevalence Across Organizations 
 

  (1) (2) (3)  (4) (5) (6) 

Outcome 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧  𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧  

Model  LPM LPM LPM  Poisson Poisson Poisson 

             

𝑛𝑒𝑤𝑈𝑠𝑒𝑟௜௧ -0.047*** -0.047*** -0.033***  -0.194*** -0.158*** -0.124***  
(0.005) (0.008) (0.003)  (0.015) (0.024) (0.007) 

log (𝑃𝐶𝑠௜ + 1) 0.014*** 0.011***   0.027*** 0.018***   
(0.002) (0.002)   (0.003) (0.003)  

log (𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡௜ + 1) 0.009 0.000   0.019* 0.009   
(0.005) (0.004)   (0.011) (0.014)  

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠௜ 
 

-0.002**   
 

-0.003    
(0.001)   

 
(0.004)  

log (𝑡𝑒𝑐ℎ𝑠௜ + 1) 
 

0.009   
 

-0.017    
(0.010)   

 
(0.035)  

𝑐𝑙𝑜𝑢𝑑௜௧ -0.109*** -0.199*** -0.148***  -0.414*** -0.524*** -0.532***  
(0.013) (0.017) (0.011)  (0.048) (0.045) (0.049) 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ = 1 &  
 

-0.001   
 

0.002  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ = 0  
 

(0.011)   
 

(0.059)  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ = 0 &  
 

0.016***   
 

0.046***  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ = 0  
 

(0.005)   
 

(0.015)  

ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐௜ 0.050*** 0.026***   0.048*** 0.036**   
(0.005) (0.005)   (0.014) (0.018)  

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜ 
 

0.019*   
 

0.047    
(0.010)   

 
(0.034)  

𝑓𝑖𝑛𝑎𝑛𝑐𝑒௜ 0.029*** 0.023***   0.050*** 0.038**   
(0.004) (0.004)   (0.007) (0.016)  

ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒௜ -0.021*** -0.009*   -0.031*** -0.036*   
(0.004) (0.005)   (0.009) (0.020)  

𝑔𝑜𝑣𝑡௜ -0.005 0.008   0.013 0.060**  

 (0.007) (0.009)   (0.016) (0.029)  

𝑐𝑜𝑢𝑛𝑡𝑏𝐵𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧  -0.001** 0.002** 0.001***  0.001 0.005 0.006*** 
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(0.001) (0.001) (0.000)  (0.002) (0.003) (0.001) 

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧  -0.002* -0.001 -0.001***  -0.005** -0.004 -0.003***  
(0.001) (0.001) (0.000)  (0.002) (0.003) (0.001) 

log (𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡௜ + 1) 0.022*** 0.014***   0.047*** 0.045***   
(0.003) (0.004)   (0.007) (0.010)  

r𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡௜ -0.001*** -0.000   -0.001 0.000   
(0.000) (0.000)   (0.001) (0.001)  

𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐௜௬ 0.007 0.007   -0.003 0.008  

 (0.007) (0.008)   (0.013) (0.021)  

        

Constant 0.513*** 0.548*** 0.577***  0.763*** 0.871*** 1.149***  
(0.007) (0.016) (0.001)  (0.017) (0.028) (0.002)    

  
  

 

Month Fixed Effects Y Y Y  Y Y Y 

Organization Fixed Effects   Y    Y 

        

Observations 3,669,972 763,648 4,854,454  3,669,972 763,552 4,667,073 

R-squared 0.266 0.281 0.547  
  

 

 
Notes: We perform a log transformation for large nonnegative variables such as employment by adding one to the variable and then taking the 
logarithm. Standard errors are clustered at the state, industry, and month level for Columns (1), (2), (4), and (5). Standard errors are clustered at the 
organization and month level for Columns (3) and (6). Standard errors are shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1. For regression 
results specific to public firms, please see Appendix Table A4.
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Table 5 Summary Statistics of the Analysis Sample for Responsiveness 
 

Count Mean STD Min 50% Max 

𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥ 161649 20.451 23.349 0 12 197 
𝑓𝑖𝑥𝑒𝑑௜௥ 161649 0.57 0.495 0 1 1 
𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ 161649 1.475 0.805 1 1 4 
𝑛𝑜𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ 161649 0.735 1.355 0 0 9 
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠௜௥ 161649 164.111 167.43 0 92 1110 
𝑠𝑎𝑚𝑒𝑀𝑎𝑗𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛௜௥ 161649 0.716 0.451 0 1 1 
ℎ𝑖𝑔ℎ𝐼𝑚𝑝𝑎𝑐𝑡௜௥ 161649 0.446 0.497 0 0 1 
ℎ𝑖𝑔ℎ𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦௜௥  161649 0.549 0.498 0 1 1 
𝑛𝑜𝑡𝑂𝑆𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐௜௥ 161649 0.9 0.3 0 1 1 
𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥  92543 24.127 22.389 1 17 197 
𝑛𝑒𝑤𝑈𝑠𝑒𝑟௜௧ 161649 0.032 0.175 0 0 1 
𝑃𝐶𝑠௜ 125847 219.124 1242.448 0 56 94659 
𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡௜ 125847 3.912 50.931 0 0.343 6660.01 
𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡௜ 125847 0.822 12.067 0 0.061 1419.834 
𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠௜ 27886 11.066 4.661 1 11 36 
𝑡𝑒𝑐ℎ𝑠௜ 27886 17.251 11.62 1 15 157 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ 34713 0.19 0.392 0 0 1 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ 161649 0.785 0.411 0 1 1 
𝑐𝑙𝑜𝑢𝑑௜௧ 161649 0.012 0.111 0 0 1 
ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐௜ 161649 0.078 0.268 0 0 1 
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜ 27886 0.898 0.303 0 1 1 
𝑓𝑖𝑛𝑎𝑛𝑐𝑒௜ 153342 0.037 0.188 0 0 1 
ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒௜ 153342 0.092 0.29 0 0 1 
𝑔𝑜𝑣𝑡௜ 153342 0.018 0.132 0 0 1 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧ 161649 0.322 1.016 0 0 7 
𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧ 161649 4.485 36.924 0 0 573 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧ 161649 1.521 3.559 0 0 14 
𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧ 161649 31.16 106.217 0 0 636.274 
𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡௜ 157211 0.999 19.182 0.05 0.175 2458.775 
𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡௜ 157211 0.202 2.358 -0.077 0.018 158.869 
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐௜௬ 161649 0.022 0.147 0 0 1 
𝑐𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 3590 0.144 0.719 0 0.007 18.237 
𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 3590 8.864 31.568 0 0.8 428 
𝑡𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 3590 9283.29 86803.4 0 407.677 2209174 
𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 3590 129.323 595.803 0 7.992 11974 
𝑖𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 3590 171.174 988.796 -2186.659 5.337 22017 
𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 3494 -0.002 0.367 -7.969 0.056 1.995 
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𝑠𝑡𝑎𝑡𝑒௜ 156872 
     

𝑛𝑎𝑖𝑐𝑠௜ 153342 
     

 
Notes: The 𝑟 subscript indexes fix releases as depicted in Figure 3. 𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥  counts the number of 
months it takes organization 𝑖 to update their vulnerable Apache version to the fixed version 𝑟 after its 
release. 𝑓𝑖𝑥𝑒𝑑௜௥ is a binary indicator variable that tracks the event of interest; it is equal to 1 if the 
organization has updated to the fixed version, and 0 if the observation is right-censored. Appendix Table 
A3 shows the correlation between the variables. The rest of notes of Tables 1 and 2 apply. 
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Table 6: Cox Proportional Hazards Regression Results for Responsiveness  
  

(1) (2) (3) (4) (5) 
 
Model Cox Cox Cox 

Stratified 
Cox 

Stratified 
Cox 

      
𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ -0.070*** 0.000 0.150*** 0.073*** 0.170***  

(0.011) (0.013) (0.028) (0.017) (0.019) 
𝑛𝑜𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ -0.017*** -0.034*** -0.053*** -0.066*** -0.098***  

(0.004) (0.005) (0.009) (0.006) (0.007) 
𝑙𝑜𝑔(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠௜௥  +  1) -0.208*** -0.195*** -0.203*** -0.094*** -0.075***  

(0.004) (0.005) (0.011) (0.007) (0.007) 
𝑠𝑎𝑚𝑒𝑀𝑎𝑗𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛௜௥ 1.043*** 1.055*** 0.700*** 1.150*** 1.184*** 
 (0.017) (0.020) (0.038) (0.021) (0.022) 
ℎ𝑖𝑔ℎ𝐼𝑚𝑝𝑎𝑐𝑡௜௥ 0.075*** 0.045*** 0.100*** 0.074*** 0.014  

(0.012) (0.014) (0.025) (0.014) (0.015) 
ℎ𝑖𝑔ℎ𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦௜௥  0.207*** 0.179*** 0.188*** 0.274*** 0.233***  

(0.013) (0.014) (0.027) (0.015) (0.015) 
𝑛𝑜𝑡𝑂𝑆𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐௜௥ 0.152*** 0.047 0.045 0.037 -0.062*  

(0.027) (0.031) (0.050) (0.032) (0.032) 
𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥   -0.020*** -0.020*** -0.018*** -0.003*** -0.003***  

(0.000) (0.000) (0.001) (0.000) (0.000) 
𝑛𝑒𝑤𝑈𝑠𝑒𝑟௜௧ 

 
-0.287*** -0.299* 

 
-0.320**   

(0.108) (0.179) 
 

(0.141) 
log (𝑃𝐶𝑠௜ + 1) 

 
-0.020*** -0.013 

  
  

(0.006) (0.012) 
  

log (𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡௜ + 1) 
 

0.000 -0.028 
  

  
(0.019) (0.026) 

  

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠௜   0.015**   
   (0.007)   
log (𝑡𝑒𝑐ℎ𝑠௜ + 1)   -0.049   
   (0.063)   
𝑐𝑙𝑜𝑢𝑑௜௧  0.129* 0.139  -0.410** 
  (0.078) (0.142)  (0.168) 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ = 1 &   0.037 0.148*   

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ = 0  (0.030) (0.076)   
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ = 0 &  

 
-0.025 -0.039 

  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ = 0  
 

(0.016) (0.032) 
  

ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐௜  -0.058** -0.048   
  (0.023) (0.032)   
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜   0.030   
   (0.056)   
𝑓𝑖𝑛𝑎𝑛𝑐𝑒௜  -0.064* -0.020   
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  (0.035) (0.066)   
ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒௜ 

 
0.058** -0.106 

  
  

(0.023) (0.068) 
  

𝑔𝑜𝑣𝑡௜ 
 

-0.013 -0.034 
  

  
(0.052) (0.102) 

  

𝑐𝑜𝑢𝑛𝑡𝑏𝐵𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧ 
 

-0.052*** -0.064*** 
 

-0.044***   
(0.009) (0.017) 

 
(0.014) 

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧ 
 

-0.034*** -0.036*** 
 

-0.052***   
(0.004) (0.008) 

 
(0.006) 

log (𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡௜ + 1)  -0.048*** -0.019   
  (0.016) (0.022)   
r𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡௜  -0.002 0.001   
  (0.005) (0.005)   
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐௜௬  0.017 0.013  0.261 
  (0.043) (0.063) 

 
 (0.205) 

Observations 92543 71343 16883 92543 92543 

 
Notes: For stratified Cox models, stratification is performed at the organization level, and standard errors 
are clustered at the organization level. Clustering at the month level is not performed due to the perfect 
mapping between releases and the months they occurred. Public firm characteristics are not included in 
the regressions to avoid a significant reduction in the number of observations. The rest of the notes of 
Table 4 apply.
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Figure 1 Proportion of Organizations with Reported Severe Security Vulnerabilities 

 
 

 
 
 
 

 
  

 

 
 
 
 
 
 
  

(a) Reported severe security vulnerabilities 

(b) Reported, undisclosed vulnerabilities 

(c) Reported & disclosed vulnerabilities 

D
ecom

pose 
Notes: The fractions of organizations for a given 
month in Figures 1(b) and 1(c) may not perfectly 
sum to the fraction of organizations in Figure 1(a). 
This is because some organizations may have 
multiple reported vulnerabilities within the same 
month, with some being disclosed and others 
remaining undisclosed.  
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Figure 2 Proportion of Organizations with Disclosed Severe Security Vulnerabilities 

 
 

 
 
 
 
 

  
 

 
 
 
 
 
 
  

(a) Disclosed severe security vulnerabilities 

(b) Disclosed, unfixed vulnerabilities 

(c) Disclosed & fixed vulnerabilities 

D
ecom

pose 
Notes: The fractions of organizations for a given 
month in Figures 2(b) and 2(c) may not perfectly 
sum to the fraction of organizations in Figure 2(a). 
This is because some organizations may have 
multiple disclosed vulnerabilities within the same 
month, with some being fixed and others remaining 
unfixed.  
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Figure 3  Proportion of Organizations Operating with Multiple Fixed Severe Security Vulnerabilities 
 

 
 Update window following July 2006 release of Apache 1.3.37, 

2.0.59, and 2.2.3, which fixed severe vulnerability CVE-2006-3747 
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Figure 4 Construction of the Analysis Sample for Responsiveness 

 
(a) Analysis sample, restricted to Adobe 
                                                                                                                    
Organization 𝑖 Month 𝑡 Apache 

Version 
… 

adobe.com 03/2001 1.3.14 … 

adobe.com 04/2001 1.3.19 … 

adobe.com 05/2001 1.3.19 … 

adobe.com 06/2001 1.3.19 … 

adobe.com 07/2001 1.3.19 … 

adobe.com 08/2001 1.3.19 … 

adobe.com 09/2001 1.3.19 … 

adobe.com 10/2001 1.3.19 … 

adobe.com 11/2001 1.3.19 … 

adobe.com 12/2001 1.3.19  

adobe.com 01/2002 1.3.19  

adobe.com 03/2002 1.3.19  

adobe.com 05/2002 1.3.23  

adobe.com 06/2002 1.3.23  

adobe.com 07/2002 1.3.26  

adobe.com 08/2002 1.3.26  

adobe.com 09/2002 1.3.26  

adobe.com 10/2002 1.3.26  

adobe.com 11/2002 1.3.26  

adobe.com 12/2002 1.3.26  

Organization 𝑖 Release 𝑟 𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥ 𝑓𝑖𝑥𝑒𝑑௜௥ 𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ … 

 
adobe.com 

 
1.3.24, 03/2002 

 
4 

 
1 

 
1 

 
… 

 
adobe.com 

 
1.3.26, 10/2002 

 
2 

 
0 

 
2 

 
… 

 

 

Apache 1.3.24 released in 
March 2002, which fixed 
severe vulnerability CVE-

2002-0061 in Apache 1.3.19 

Firm used version above 
1.3.24 by July 2002 

(b) Analysis sample for responsiveness 

Apache 1.3.27 released in October 2002, which fixed severe 
vulnerabilities CVE-2002-0839 and CVE-2002-0843 in Apache 1.3.26 

Firm used 1.3.26 until the final recorded observation of Apache usage; 
therefore this update cycle is right-censored 
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Appendices 

A.1. Correlation Tables 

Table A1: Correlation Table of the Analysis Sample for Prevalence 
  

(1) (2) (3) (4) (5) (6) 

(1)𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑௜௧ 1 0.84 0.79 0.7 0.63 0.6 

(2)𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑௜௧  0.84 1 0.94 0.74 0.75 0.71 

(3)𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ 0.79 0.94 1 0.74 0.76 0.75 

(4)𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑௜௧  0.7 0.74 0.74 1 0.98 0.95 

(5)𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑௜௧ 0.63 0.75 0.76 0.98 1 0.97 

(6)𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ 0.6 0.71 0.75 0.95 0.97 1 
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Table A2: Correlation Table of the Analysis Sample 

Notes: We dropped public firm characteristics from Compustat to reduce table size. 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) 

(1)𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ 1 0.75 -0.07 0.02 0.01 0.01 0.02 0.02 -0.04 -0.01 -0.05 0.05 0.02 0.01 -0.01 0.01 -0.04 -0.02 -0.09 -0.04 0.01 0.01 0.02 

(2)𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ 0.75 1 -0.07 0.02 0.01 0.01 0.01 0.01 -0.03 -0.01 -0.05 0.04 0.01 0.01 -0.01 0.01 -0.02 -0.02 -0.06 -0.04 0.02 0.02 0.02 

(3)𝑛𝑒𝑤𝑈𝑠𝑒𝑟௜௧ -0.07 -0.07 1 0.01 0 0 0.02 0.04 0.01 0.01 0.01 0 0 0.01 0 0 -0.02 0 -0.04 -0.01 0 0.01 0 

(4)𝑃𝐶𝑠௜ 0.02 0.02 0.01 1 0.15 0.11 0.21 0.32 -0.06 -0.03 0 0.21 0.04 0 0.02 0.03 0 0 -0.01 0 0.11 0.12 0.07 

(5)𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡௜ 0.01 0.01 0 0.15 1 0.99 0.05 0.09 -0.04 0 0 0.08 0.02 0.01 -0.01 0 0 0 0 0 0.17 0.4 0.1 

(6)𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡௜ 0.01 0.01 0 0.11 0.99 1 0.03 0.07 -0.03 0 0 0.07 0.01 0.02 -0.01 0 0 0 0 0 0.13 0.34 0.09 

(7)𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠௜ 0.02 0.01 0.02 0.21 0.05 0.03 1 0.85 -0.04 -0.03 0.03 0.34 0.43 -0.07 0.03 0 0.03 0.01 0.02 0 0.09 0.07 0.05 

(8)𝑡𝑒𝑐ℎ𝑠௜ 0.02 0.01 0.04 0.32 0.09 0.07 0.85 1 -0.04 -0.04 0.01 0.38 0.28 -0.07 0.03 0.02 0.01 0 -0.01 -0.01 0.13 0.11 0.06 

(9)𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ -0.04 -0.03 0.01 -0.06 -0.04 -0.03 -0.04 -0.04 1 
 

-0.02 -0.09 -0.02 -0.02 0.03 -0.01 0 0 0.01 0 -0.01 -0.03 -0.03 

(10)𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ -0.01 -0.01 0.01 -0.03 0 0 -0.03 -0.04 
 

1 0.01 -0.05 -0.01 -0.02 -0.03 0 0.01 0 -0.01 0 -0.01 0 -0.01 

(11)𝑐𝑙𝑜𝑢𝑑௜௧ -0.05 -0.05 0.01 0 0 0 0.03 0.01 -0.02 0.01 1 0.04 0.01 0 0 -0.01 0.11 0.02 0.13 0.04 0 0.01 0.03 

(12)ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐௜ 0.05 0.04 0 0.21 0.08 0.07 0.34 0.38 -0.09 -0.05 0.04 1 0.19 0.01 -0.06 0.01 0.02 0.01 -0.01 0 0.09 0.11 0.15 

(13)𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜ 0.02 0.01 0 0.04 0.02 0.01 0.43 0.28 -0.02 -0.01 0.01 0.19 1 0.01 0.02 -0.02 -0.01 0 -0.01 0 0.02 0.02 0.02 

(14)𝑓𝑖𝑛𝑎𝑛𝑐𝑒௜ 0.01 0.01 0.01 0 0.01 0.02 -0.07 -0.07 -0.02 -0.02 0 0.01 0.01 1 -0.06 -0.02 0 0 -0.06 -0.01 0 0.03 0.05 

(15)ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒௜ -0.01 -0.01 0 0.02 -0.01 -0.01 0.03 0.03 0.03 -0.03 0 -0.06 0.02 -0.06 1 -0.04 0 0 0.14 -0.03 0 -0.01 -0.04 

(16)𝑔𝑜𝑣𝑡௜ 0.01 0.01 0 0.03 0 0 0 0.02 -0.01 0 -0.01 0.01 -0.02 -0.02 -0.04 1 -0.01 0 -0.07 -0.01 0 -0.01 -0.02 

(17)𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧ -0.04 -0.02 -0.02 0 0 0 0.03 0.01 0 0.01 0.11 0.02 -0.01 0 0 -0.01 1 0.2 0.31 0.08 0 0 0.02 

(18)𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧ -0.02 -0.02 0 0 0 0 0.01 0 0 0 0.02 0.01 0 0 0 0 0.2 1 0.06 0.27 0 0 0 

(19)𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧ -0.09 -0.06 -0.04 -0.01 0 0 0.02 -0.01 0.01 -0.01 0.13 -0.01 -0.01 -0.06 0.14 -0.07 0.31 0.06 1 0.17 0 0 0.01 

(20)𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧ -0.04 -0.04 -0.01 0 0 0 0 -0.01 0 0 0.04 0 0 -0.01 -0.03 -0.01 0.08 0.27 0.17 1 0 0 0.01 

(21)𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡௜ 0.01 0.02 0 0.11 0.17 0.13 0.09 0.13 -0.01 -0.01 0 0.09 0.02 0 0 0 0 0 0 0 1 0.54 0.12 

(22)𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡௜ 0.01 0.02 0.01 0.12 0.4 0.34 0.07 0.11 -0.03 0 0.01 0.11 0.02 0.03 -0.01 -0.01 0 0 0 0 0.54 1 0.2 

(23)𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐௜௬ 0.02 0.02 0 0.07 0.1 0.09 0.05 0.06 -0.03 -0.01 0.03 0.15 0.02 0.05 -0.04 -0.02 0.02 0 0.01 0.01 0.12 0.2 1 
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Table A3: Correlation Table of the Analysis Sample for Responsiveness 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

(1)𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥ 1 -0.02 -0.23 -0.05 0.18 -0.28 0.16 -0.01 0.05 0.51 
(2)𝑓𝑖𝑥𝑒𝑑௜௥ -0.02 1 -0.24 0.04 -0.27 0.23 0.08 0.18 -0.09 -0.02 
(3)𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ -0.23 -0.24 1 0.32 0.02 0.15 -0.36 -0.22 0.2 -0.04 
(4)𝑛𝑜𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ -0.05 0.04 0.32 1 -0.11 0.32 -0.14 0.28 0.02 0.04 
(5)𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠௜௥ 0.18 -0.27 0.02 -0.11 1 -0.54 0.04 -0.15 0.01 0.29 
(6)𝑠𝑎𝑚𝑒𝑀𝑎𝑗𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛௜௥ -0.28 0.23 0.15 0.32 -0.54 1 -0.16 0.27 -0.13 -0.06 
(7)ℎ𝑖𝑔ℎ𝐼𝑚𝑝𝑎𝑐𝑡௜௥ 0.16 0.08 -0.36 -0.14 0.04 -0.16 1 -0.39 0.04 0.07 
(8)ℎ𝑖𝑔ℎ𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦௜௥ -0.01 0.18 -0.22 0.28 -0.15 0.27 -0.39 1 -0.3 0 
(9)𝑛𝑜𝑡𝑂𝑆𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐௜௥ 0.05 -0.09 0.2 0.02 0.01 -0.13 0.04 -0.3 1 -0.04 
(10)𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥ 0.51 -0.02 -0.04 0.04 0.29 -0.06 0.07 0 -0.04 1 

Notes: To reduce the table size, we have kept only the outcome variable, the event variable, and the characteristics of the updates.
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A.2. Determinants of Vulnerabilities Analysis for Public Firms 

Table A4: Regression Results for the Vulnerability Prevalence Across Public Firms 
 

  (1) (2)  (3) (4) 

Outcome 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧  𝑛𝑢𝑚𝑏𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧ 

Model  LPM LPM  Poisson Poisson 

           

𝑛𝑒𝑤𝑈𝑠𝑒𝑟௜௧ -0.068*** -0.038***  -0.229*** -0.102***  
(0.016) (0.009)  (0.054) (0.025) 

log (𝑃𝐶𝑠௜ + 1) 0.009 
 

 0.020 
 

 
(0.007) 

 
 (0.019) 

 

log (𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡௜ + 1) -0.001 
 

 0.001 
 

 
(0.006) 

 
 (0.021) 

 

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠௜ 0.005 
 

 0.019** 
 

 
(0.004) 

 
 (0.008) 

 

log (𝑡𝑒𝑐ℎ𝑠௜ + 1) -0.044 
 

 -0.165*** 
 

 
(0.031) 

 
 (0.060) 

 

𝑐𝑙𝑜𝑢𝑑௜௧ -0.179*** -0.165***  -0.429*** -0.525***  
(0.037) (0.037)  (0.085) (0.094) 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ = 1 &  0.057 
 

 0.235 
 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ = 0  (0.035) 
 

 (0.178) 
 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ = 0 &  0.000 
 

 0.008 
 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ = 0  (0.017) 
 

 (0.064) 
 

ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐௜ 0.031 
 

 0.001 
 

 
(0.019) 

 
 (0.052) 

 

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜ 0.060* 
 

 0.098 
 

 
(0.030) 

 
 (0.098) 

 

𝑓𝑖𝑛𝑎𝑛𝑐𝑒௜ -0.008 
 

 -0.075 
 

 
(0.023) 

 
 (0.058) 

 

ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒௜ -0.004 
 

 0.081 
 

 
(0.058) 

 
 (0.131) 

 

𝑐𝑜𝑢𝑛𝑡𝑏𝐵𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧  0.001 -0.003  -0.001 -0.004  
(0.004) (0.002)  (0.011) (0.005) 

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧  -0.000 0.001  0.005 0.009*  
(0.003) (0.002)  (0.006) (0.005) 

log (𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡௜ + 1) 0.005 
 

 0.036* 
 

 
(0.008) 

 
 (0.021) 

 

r𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡௜ -0.000 
 

 -0.001 
 

 
(0.000) 

 
 (0.001) 

 

𝑐𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ -0.004 -0.010  0.029 0.032*  
(0.009) (0.014)  (0.021) (0.019) 

log (𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢௜௬ + 1) 0.012 -0.003  0.032 0.008  
(0.010) (0.015)  (0.033) (0.035) 

log (𝑡𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢௜௬ + 1) 0.010 0.001  0.049** 0.016 
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(0.007) (0.013)  (0.020) (0.033) 

log (𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢௜௬ + 1) -0.006 -0.010  -0.049*** 0.011  
(0.009) (0.012)  (0.017) (0.030) 

𝑖𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 0.000 0.000  -0.000 0.000  
(0.000) (0.000)  (0.000) (0.000) 

𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡௜௬ 0.017 -0.000  0.097 0.001  
(0.025) (0.007)  (0.067) (0.035) 

      

Constant 0.541*** 0.661***  0.811*** 1.072***  
(0.057) (0.065)  (0.134) (0.181)    

 
  

Month Fixed Effects Y Y  Y Y 

Organization Fixed Effects 
 

 Y   Y 

Observations 56,077 101,555  55,837 96,266 

R-squared 0.339 0.593  
  

Notes: Standard errors are clustered at the state, industry, and month level for Columns (1) and (3), and are clustered 

at the organization and month level for Columns (2) and (4). The rest of the notes of Table 4 apply. 
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A.3. Results for 2013—2018 

Table A5: Regression Results for the Vulnerability Prevalence Across Organizations, 2013—2018  
 

  (1) (2) (3)  (4) (5) (6) 

Outcome 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧  𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑௜௧  

Model  LPM LPM LPM  Poisson Poisson Poisson 

  
  

  
  

 

𝑛𝑒𝑤𝑈𝑠𝑒𝑟௜௧ -0.067*** -0.055*** -0.035***  -0.204*** -0.133** -0.108***  
(0.012) (0.017) (0.004)  (0.047) (0.055) (0.017) 

log (𝑃𝐶𝑠௜ + 1) 0.020*** 0.019***   0.035*** 0.037***   
(0.004) (0.004)   (0.010) (0.008)  

log (𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡௜ + 1) 0.019 0.002   0.016 -0.007   
(0.013) (0.009)   (0.029) (0.029)  

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠௜ 
 

-0.006**   
 

-0.015**    
(0.002)   

 
(0.006)  

log (𝑡𝑒𝑐ℎ𝑠௜ + 1) 
 

0.028   
 

0.016    
(0.020)   

 
(0.057)  

𝑐𝑙𝑜𝑢𝑑௜௧ -0.137*** -0.226*** -0.181***  -0.483*** -0.591*** -0.597***  
(0.013) (0.018) (0.015)  (0.063) (0.061) (0.061) 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ = 1 &  
 

-0.049   
 

-0.174**  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ = 0  
 

(0.031)   
 

(0.081)  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ = 0 &  
 

-0.001   
 

0.025  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ = 0  
 

(0.011)   
 

(0.021)  

ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐௜ 0.125*** 0.070***   0.172*** 0.135***   
(0.009) (0.009)   (0.031) (0.035)  

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜ 
 

0.036   
 

0.075*    
(0.021)   

 
(0.045)  

𝑓𝑖𝑛𝑎𝑛𝑐𝑒௜ 0.052*** 0.020   0.032** 0.019   
(0.008) (0.015)   (0.015) (0.034)  

ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒௜ -0.033** 0.017   -0.046 -0.047   
(0.013) (0.015)   (0.030) (0.052)  
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𝑔𝑜𝑣𝑡௜ -0.001 -0.002   0.115*** 0.134*  

 (0.014) (0.020)   (0.039) (0.069)  

𝑐𝑜𝑢𝑛𝑡𝑏𝐵𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧  0.000 0.004*** 0.000  0.005** 0.010*** 0.002*  
(0.001) (0.001) (0.000)  (0.002) (0.003) (0.001) 

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧  -0.002 -0.001 -0.000  -0.005* -0.003 -0.001  
(0.001) (0.001) (0.000)  (0.003) (0.004) (0.001) 

log (𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡௜ + 1) 0.035*** 0.022***   0.067*** 0.069***   
(0.005) (0.008)   (0.017) (0.023)  

r𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡௜ -0.002** -0.001   -0.004* -0.004   
(0.001) (0.001)   (0.002) (0.003)  

𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐௜௬ -0.006 -0.015   -0.038 -0.046  

 (0.013) (0.019)   (0.025) (0.048)  

        

Constant 0.364*** 0.429*** 0.460***  0.407*** 0.528*** 1.189***  
(0.012) (0.040) (0.001)  (0.029) (0.076) (0.005)    

  
  

 

Month Fixed Effects Y Y Y  Y Y Y 

Organization Fixed Effects   Y    Y 

        

Observations 983,461 203,694 1,263,331  983,461 203,694 993,032 

R-squared 0.194 0.170 0.789  
  

 

                     
                    Notes of Table 4 apply.
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Table A6: Cox Proportional Hazards Regression Results for Responsiveness, 2013—2018   
  

(1) (2) (3) (4) (5) 

 
Model 

Cox Cox Cox Stratified 
Cox 

Stratified 
Cox 

      
𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ 1.173*** 1.286*** 2.217*** 1.751 1.530  

(0.083) (0.093) (0.215) (1.125) (1.187) 
𝑛𝑜𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑௜௥ 0.412*** 0.524*** 0.349* 0.116 0.215  

(0.110) (0.143) (0.188) (0.238) (0.301) 
𝑙𝑜𝑔(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠௜௥  +  1) -0.182*** -0.164*** -0.113* -0.209 -0.236  

(0.022) (0.023) (0.060) (0.170) (0.175) 
𝑠𝑎𝑚𝑒𝑀𝑎𝑗𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛௜௥ 0.013 -0.157 -0.329* 3.928*** 3.515*** 
 (0.109) (0.131) (0.197) (0.716) (0.852) 
ℎ𝑖𝑔ℎ𝐼𝑚𝑝𝑎𝑐𝑡௜௥ 0.681 0.308 3.511*** 4.643 3.134  

(0.621) (0.806) (1.055) (3.281) (3.800) 
ℎ𝑖𝑔ℎ𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦௜௥  -0.022*** -0.023*** -0.027*** -0.050** -0.055**  

(0.002) (0.002) (0.004) (0.024) (0.027) 
𝑛𝑜𝑡𝑂𝑆𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐௜௥ 1.173*** 1.286*** 2.217*** 1.751 1.530  

(0.083) (0.093) (0.215) (1.125) (1.187) 
𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥௜௥   0.412*** 0.524*** 0.349* 0.116 0.215  

(0.110) (0.143) (0.188) (0.238) (0.301) 
𝑛𝑒𝑤𝑈𝑠𝑒𝑟௜௧ 

 
0.147 -0.380 

 
-13.997***   

(0.357) (0.606) 
 

(1.252) 
log (𝑃𝐶𝑠௜ + 1) 

 
-0.040 -0.006 

  
  

(0.025) (0.054) 
  

log (𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡௜ + 1) 
 

0.101 -0.033 
  

  
(0.089) (0.124) 

  

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠௜   0.024   
   (0.032)   
log (𝑡𝑒𝑐ℎ𝑠௜ + 1)   0.093   
   (0.278)   
𝑐𝑙𝑜𝑢𝑑௜௧  0.551*** 0.452**  0.772 
  (0.087) (0.178)  (1.760) 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ = 1 &   -0.104 -0.542   

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ = 0  (0.144) (0.348)   
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑௜ = 0 &   0.080 0.082   

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔௜ = 0   (0.069) (0.148)   
ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐௜  -0.109 -0.305**   
  (0.120) (0.139)   
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜   0.043   
   (0.217)   
𝑓𝑖𝑛𝑎𝑛𝑐𝑒௜  0.051 0.252   
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  (0.146) (0.258)   
ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒௜  0.103 -0.340    

 (0.100) (0.342)   
𝑔𝑜𝑣𝑡௜  -0.057 -0.660*    

 (0.210) (0.391)   
𝑐𝑜𝑢𝑛𝑡𝑏𝐵𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒௜௧  -0.021 0.028  -0.191  

 (0.017) (0.038)  (0.143) 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦௜௧  -0.011 -0.020  -0.068  

 (0.008) (0.015)  (0.074) 
log (𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡௜ + 1)  -0.019 -0.092   
  (0.074) (0.104)   
r𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡௜  0.015 0.021   
  (0.015) (0.013)   
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐௜௬  -0.045 0.010  -17.180*** 
  (0.188) (0.248)  (1.651) 
      
Observations 9941 8041 1673 9941 9941 

 
Notes of Table 6 apply.
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A.4. Backporting 

TBD. Just a verbal argument that backporting should not undermine our results, or a more 
quantitative approach? 


